

 7

Introduction to Object
Oriented Modeling

UNIT 1 INTRODUCTION TO OBJECT
ORIENTED MODELING

Structure Page Nos.

1.0 Introduction 7
1.1 Objectives 7
1.2 Object Oriented Modeling 8
1.3 Basic Philosophy of Object Orientation 10
1.4 Characteristics Object Oriented Modeling 11

1.4.1 Class and Objects
1.4.2 Links and Association
1.4.3 Generalization and Inheritance

1.5 An Object Model 16
1.6 Benefits of OO Modeling 17
1.7 Introduction to OOA& Design Tools 17
1.8 Summary 19
1.9 Solutions/Answers 19

1.0 INTRODUCTION

Object oriented design methods emerged in the 1980s, and object oriented analysis
methods emerged during the 1990s. In the early stage, object orientation was largely
associated with the development of graphical user interfaces (GUIs), and a few other
applications became widely known. In the 1980s, Grady Booch published a paper on
how to design for Ada, and gave it the title, Object Oriented Design. In 1991, Booch
was able to extend his ideas to a genuinely object oriented design method in his book
with the same title, revised in 1993 (Booch, 1994) [sic].

The Object Modeling Technique (OMT) covers aspects of object oriented analysis and
design. OOT provides a very productive and practical way of Software development.
As object oriented Technology (OOT) is not language dependent, there is no need for
considering a final implementation language, during Object Oriented Modeling
(OOM). OOT combine structural, control and functional aspects of the system. We
will discuss the structural, control and functional aspects of the systems in great detail
in block 3 of this course.

In this unit, we will discuss the basic notions of object orientation. This unit will cover
discussion on objects, classes, links, association, generalization, and inheritance. We
will discuss the basics of an object model with the help of an example. Towards the
end of this unit we will cover the benefits of OOM. In this unit, you will also be
introduced to some OOAD tools.

1.1 OBJECTIVES

After going through this unit, you should be able to:

• explain basics of object oriented Modeling;
• define Objects and Classes;
• explain the concepts of links and Associations;
• explain the concept of Generalization and Inheritance;
• describe benefits of Object Oriented Modeling, and
• explain the use of some OOAD tools.

8

Object Oriented
Modeling and UML 1.2 OBJECT ORIENTED MODELING

Object oriented modeling is entirely a new way of thinking about problems. This
methodology is all about visualizing the things by using models organized around real
world concepts. Object oriented models help in understanding problems,
communicating with experts from a distance, modeling enterprises, and designing
programs and database. We all can agree that developing a model for a software
system, prior to its development or transformation, is as essential as having a blueprint
for large building essential for its construction. Object oriented models are represented
by diagrams. A good model always helps communication among project teams, and to
assure architectural soundness.

It is important to note that with the increasing complexity of systems, importance of
modeling techniques increases. Because of its characteristics Object Oriented
Modeling is a suitable modeling technique for handling a complex system. OOM
basically is building a model of an application, which includes implementation details
of the system, during design of the system.

Brooks observes that the
hard part of software
development is the
manipulation of its essence
due to the inherent
complexity of the problem,
rather than the accidents of
its mapping into a particular
language, which are due to
temporary imperfections in
our tools that are rapidly
being corrected (Brooks-87).

As you know, any system development refers to the initial portion of the software life
cycle: analysis, design, and implementation. During object oriented modeling
identification and organization of application with respect to its domain is done, rather
than their final representation in any specific programming language. We can say that
OOM is not language specific. Once modeling is done for an application, it can be
implemented in any suitable programming language available.

OOM approach is a encouraging approach in which software developers have to think
in terms of the application domain through most of the software engineering life
cycle. In this process, the developer is forced to identify the inherent concepts of the
application. First, developer organize, and understood the system properly and then
finally the details of data structure and functions are addressed effectively.

In OOM the modeling passes through the following processes:

• System Analysis
• System Design
• Object Design, and
• Final Implementation.

System Analysis: In this stage a statement of the problem is formulated and a model
is build by the analyst in encouraging real-world situation. This phase show the
important properties associated with the situation. Actually, the analysis model is a
concise, precise abstraction and agreement on how the desired system must be
developed. You can say that, here the objective is to provide a model that can be
understood and criticized by any application experts in the area whether the expert is a
programmer or not.

System Design: At this stage, the complete system architecture is designed. This is
the stage where the whole system is divided into subsystems, based on both the
system analysis model and the proposed architecture of the system.

Object Design: At this stage, a design model is developed based on the analysis
model which is already developed in the earlier phase of development. The object
design decides the data structures and algorithms needed to implement each of the
classes in the system with the help of implementation details given in the analysis
model.
Final Implementation: At this stage, the final implementation of classes and
relationships developed during object design takes place a particular programming
language, database, or hardware implementation (if needed). Actual implementation

 9

Introduction to Object
Oriented Modeling

should be done using software engineering practice. This helps to develop a flexible
and extensible system.

Whole object oriented modeling is covered by using three kinds of models for a
system description. These models are:

• object model,
• dynamic model, and
• functional model.

Object models are used for describing the objects in the system and their relationship
among each other in the system. The dynamic model describes interaction among
objects and information flow in the system. The data transformations in the system are
described by a functional model. All three models are applicable during all stages
of development. These models bear the responsibility of acquiring implementation
details of the system development. It is important to note that you cannot describe a
system completely until unless all three modes are described properly. In block 3 of
this course, we will discuss these three models in detail.

Before we discuss the characteristics of object oriented modeling, let us see how
object oriented development is different from structured development of the system.
In the structured approach, the main emphasis is on specifying and decomposing
system functionality. Structured approach is seen as the most direct way of
implementing a desired goal. A structured approach has certain basic problems, such
as, if the requirements of system change then a system based on decomposing
functionality may require massive restructuring, and, the system gradually become
unmanageable. In contrast to the structured approach, the basic focus of object-
oriented approach is to identify objects from the application domain, and then to
associate procedures (methods) around these identified objects.

You can say that object oriented development is an indirect way of system
development because in this approach a holistic view of application domain is
considered, and objects are identified in the related problem domain. A historic
view of application helps in realizing the situations and characteristics of the system.
Taking a holistic view of the problem domain rather than considering functional
requirements of a single problem give an edge to object oriented development.
Once the objects are created with the needed characteristics, they communicate with
each other by message passing during problem solving.

 Check Your Progress 1

1) What is OOM?

……………………………………………………………………………..

……………………………………………………………………………..

……………………………………………………………………………..

2) List different steps involved in OOM process.

……………………………………………………………………………..

………………………………………………………………………….….

……………………………………………………………………………..

3) Differentiate OO development from structured development.

……………………………………………………………………………..

……………………………………………………………………………..

……………………………………………………………………………..

10

Object Oriented
Modeling and UML 1.3 BASIC PHILOSOPHY OF OBJECT

ORIENTATION

There are several characteristics of object-oriented technology. Some of these
characteristics have been discussed in course MCS-024. We have also implemented
some of them in Java programming language, although these characteristics are not
unique to object-oriented systems in the sense that they vary from object based
systems to object oriented systems. However, most of the properties are particularly
well supported in object oriented systems.

Now, let us discuss about the basic characteristics around which object oriented
systems are developed.

Abstraction
Abstraction is one of the very important concepts of object oriented systems
Abstraction focues on the essential, inherent aspects of an object of the system. It does
not represent the accidental properties of the system. In system development,
abstraction helps to focus on what an object is supposed to do, before deciding how it
should be implemented. The use of abstraction protects the freedom to make decisions
for as long as possible, by avoiding intermediate commitments in problem solving.
Most of the modern languages provide data abstraction. With the abstraction, ability
to use inheritance and ability to apply polymorphism provides additional freedom and
capability for system development. When you are using abstraction during analysis,
you have to deal with application-domain concepts. You do not have to design and
make implementation decisions at that point.

Encapsulation
Encapsulation, or information hiding, is the feature of separating the external aspects
of an object, from the internal implementation details of that object. It helps in hiding
the actual implementation of characteristics of objects. You can say that encapsulation
is hiding part of implementation that do internal things, and these hidden parts are not
concerned to outside world. Encapsulation enables you to combine data structure and
behaviour in a single entity. Encapsulation helps in system enhancement. If there is a
need to change the implementation of object without affecting its external nature,
encapsulation is of great help.

Polymorphism
Class hierarchy is the deciding factor in the case of more than one implementation of
characteristics. An object oriented program to calculate the area of different Figures
would simply call the Find_ Area operation on each figure whether it is a circle,
triangle, or something else. The decision of which procedure to use is made implicitly
by each object, based on its class polymorphism makes maintenance easier because
the calling code need not be modified when a new class is added.

Sharing of Structure and Behaviour
One of the reasons for the popularity of object-oriented techniques is that they
encourage sharing at different levels. Inheritance of both data structure and behaviour
allows common structure (base class) to be used in designing many subclasses based
on basic characteristics of base class, and develop new classes with less effort.
Inheritance is one of the main advantages of any object oriented language, because it
gives scope to share basic code.

In a broader way we can say that object oriented development not only allows
information sharing and reuse within an application, but also, it gives a base for
project enhancement in future. As and when there is a need for adding new
characteristics in the system, they can be added as an extension of existing basic

 11

Introduction to Object
Oriented Modeling

features. This can be done by using inheritance, and that too, without major
modification in the existing code. But be aware that just by using object orientation
you do not get a license to ensure reusability and enhancement. For ensuring
reusability and enhancement you have to have a more general design of the system.
This type of design can be developed only if the system is properly studied and
features of proposed system are explored.

Emphasis on Object Structure, not on Operation Implementation
In object orientation the major emphasis is on specifying the characteristics of the
objects in a system, rather than implementing these characteristics. The uses of an
object depend highly on the facts of the application and regular changes during
development. As requirements extend, the features supplied by an object are much
more stable than the ways in which they are used, hence software systems built on
object structure are more secure.

While developing a system using the object oriented approach, main emphasis is on
the essential properties of the objects involved in the system than on the procedure
structure to be used for implementation. During this process what an object is, and its
role in system is deeply thought about.

1.4 CHARACTERISTICS OF OBJECT ORIENTED
MODELING

In object oriented modeling objects and their characteristics are described. In any
system, objects come into existence for playing some role. In the process of defining
the roles of objects, some features of object orientation are used. In this section we
will discuss these features, which include:

• Class and Objects
• Links and Association
• Generalization and Inheritance

Let us start our discussion with Class and Objects.

1.4.1 Class and Objects

A class is a collection of things, or concepts that have the same characteristics. Each
of these things, or concepts is called an object.

We will discuss, in the next unit of this block, that the class is the most fundamental
construct within the UML.

Classes define the basic words of the system being modeled. Using a set of classes as
the core vocabulary of a software project tends to greatly facilitate understanding and
agreement about the meanings of terms, and other characteristics of the objects in the
system.

Classes can serve as the foundation for data modeling. In OOM, the term classes is
usually the base from which visual modeling tools−such as Rational Rose XDE,
Visual Paradigm function and design the model of systems.

Now, let us see how the characteristics that classes share are captured as attributes and
operations. These terms are defined as follows:

• Attributes are named slots for data values that belong to the class. As we have
studied in MCS-024, different objects of a given class typically have at least
some differences in the values of their attributes.

• Operations represent services that an object can request to affect the behaviour
of the object or the system itself.

12

Object Oriented
Modeling and UML

In unit 3 of this block, we will cover the standard UML notation for OOM in detail.
Here, we will mention about standard notation of class. The notation for a class is a
box with three sections. The top section contains the name of the class in boldface
type, the middle section contains the attributes that belong to the class, and the bottom
section contains the class’s operations as you can see in Figure 1.

Class

Attribute

Operations

Figure 1: Class notation

You can, also show a class without its attributes or its operations, or the name of the
class can appear by itself as shown in Figure 2.

 Class

attributes

Class
Class

Operations

Figure 2: Alternate class notations

The naming convention for classes are as follow:
• Class names are simple nouns or noun phrases.
• Attribute names in a class are simple nouns or noun phrases. The first word is

not capitalized, but subsequent words may be capital.
• Operation names are simple verbs. As with attributes, the first word is not

capitalized and subsequent words may be capital.

Objects
The notation for an object is the same in basic form as that for a class. There are three
differences between the notations, which are:
• Within the top section of the class box, the name of the class to which the object

belongs appears after a colon. The object may have a name, which appears
before the colon, or it may be anonymous, in which case nothing appears before
the colon.

• The contents of the top compartment are underlined for an object.
• Each attribute defined for the given class has a specific value for each object

that belongs to that class.

You can see the notion of an object you can see in Figure 3.

:Class

Attribute 1 = value 1

Object: Class

Attribute 1 = value 1
Attribute 2 = value 2

Figure 3: Notation of object

If you look around you will find many examples of real world objects such as your
books, your desk, your television, etc.

Everything that the software object knows (state) and can do (behaviour) is expressed
by the variables and the methods within that object. In other words, all the objects
share states and behaviour. Let us say that a software object that models your real-
world bicycle would have variables that indicated the bicycle’s current state: its speed
is 20 mph, and its current gear is the 3rd gear, etc.

 13

Introduction to Object
Oriented Modeling

Communication by Message Passing
You will agree that a single object alone is generally not very useful. Objects usually
appear as a components of a larger program or a system. Through the interaction of
these objects, functionality of systems are achieved. Software objects interact and
communicate with each other by message passing to each other. When object X wants
object Y to perform one of methods of object Y, object X sends a message to object
Y. Message passing provide two significant benefits:

• An object’s characteristics are expressed through its methods, so message
passing supports all possible interactions between objects.

• It closes the gap between objects. Objects do not need to be in the same process,
or even on the same machine, to send and receive messages back and forth to
each other.

1.4.2 Links and Association
Links and associations are the basic means used for establishing relationships among
objects and classes of the system. In the next subsection we will discuss links and
associations which are used for representing relationship.

General Concepts
A link is a physical or conceptual connection between objects for example, a student,
Ravi study in IGNOU. Mathematically, you can define a link as a tuple that is an
ordered list of objects. Further, a link is also defined as an instance of an association.
In other words you can say that an association is a group of links with a common
structure and common meanings, for example, a student study in a university. All the
links in an association connects objects from the same classes. A link is used to show
a relationship between two (or more) objects.

Association and classes are similar in the sense that classes describe objects, and
association describe links. Figure 4a shows us how we can show the association
between Student and University

Student

association name

University Registered in

Class Class
Figure 4a: Association

Note that every association has roles. For example, in Figure 4b you can see that two
classes, Student and University, have their defined roles. Here you can also see that
binary association has two roles, one from each class.

 Role

Teach Study

University Student

 Figure 4b: Roles in association

Associations may be binary, ternary, or have higher order. In exercise, the vast
majority of association are binary or ternary associations. But a ternary association is
formed compulsion; they cannot be converted into binary association. If a ternary
association is decomposed in some other association, some information will be lost. In
Figure 5 you can see a ternary association.

14

Object Oriented
Modeling and UML

 Class

Teacher Student

 Figure 5: Ternary association

Multiplicity
Multiplicity in an association specifies how many objects participate in a relationship.
Multiplicity decides the number of related objects. Multiplicity is generally explained
as “one” or “many,” but in general it is a subset of the non-negative integers.

Table 1: Multiplicity Indicators.
Indicator Meaning
0..1 Zero or one
1 One only
0..* Zero or more
1..* One or more
n Only n (where n > 1)
0..n Zero to n (where n > 1)
1..n One to n (where n > 1)

In associations, generally movement is in both the directions of the relationships but if
you want to be specific in any particular direction, you have to mark it by an arrow as
given in Figure 6.

 Movement

Multiplicity

 0…* 1 Program Student

Figure 6: Association and movement

Aggregation
Aggregation is a special form of association, which models the “part-whole” or “a-
part-of” relationship as an aggregate (the whole) and parts. The most considerable
property of aggregation is transitivity, that is, if X is part of Y and Y is part of Z, then
X is part of Z. Aggregation is seen as a relationship in which an assembly class is
related to component class. In this component objects are not having separate
existence, they depend on composite objects as you can see in Figure 7 Exam
Schedule is not having separate existence.

aggregation

Exam Schedule

Part Whole

Candidate

Figure 7: Association and whole-part relationship

 15

Introduction to Object
Oriented Modeling Check Your Progress 2

1) What is abstraction?

……………………………………………………………………………………
……………………………………………………………………………………

2) What is association? Give example of association.

…………………………………………………………………………….
……………………………………………………………………………..

3) What is multiplicity in associations? Give example to explain multiplicity?

 ……………………………………………………………………………………

……………………………………………………………………………………

1.4.3 Generalization and Inheritance
In this section we will discuss the concepts of generalization, inheritance, and their
uses in OOM.

Generalization
Generalization and inheritance are powerful abstractions for sharing the structure
and/or behaviour of one or more classes.

Generalization is the relationship between a class, and it defines a hierarchy of
abstraction in which subclasses (one or more) inherit from one or more superclasses.

Generalization and inheritance are transitive across a subjective number of levels in
the hierarchy. Generalization is an “is-a-kind of” relationship, for example, Saving
Account is a kind of Account, PG student is kind of Student, etc.

The notation for generalization is a triangle connecting a super class to its
subclasses. The superclass is connected by a line to the top of the triangle. The
subclasses are connected by lines to a horizontal bar attached to the base of the
triangle. Generalization is a very useful construct for both abstract modeling and
implementation. You can see in Figure 8, a generalization of Account class.

CurrentAccountSavingAccount

Account

Figure 8: Generalization of account class
Inheritance
Inheritance is taken in the sense of code reuse within the object oriented development.
During modeling, we look at the resulting classes, and try to group similar classes
together so that code reuse can be enforced. Generalization, specialization, and
inheritance have very close association. Generalization is used to refer to the
relationship among classes, and inheritance is used for sharing attributes and
operations using the generalization relationship. In respect of inheritance,
generalization and specialization are two phases of a coin in the sense that if a

16

Object Oriented
Modeling and UML

subclass is seen from a superclass the subclass is seen as a specialized version of
superclass and in, reverse, a superclass looks like general form of subclass.

During inheritance, a subclass may override a superclass feature by defining that
feature with the same name. The overriding features (the subclass feature with the
same names of superclass features) refines and replaces the overridden feature (the
superclass feature).

Now let us look at the diagram given in Figure 9. In this diagram, Circle, Triangle,
and Square classes are inherited from Shape class. This is a case of single inheritance
because here, one class inherits from only one class.

Figure 9: Single inheritance

Multiple inheritance is shown in Figure 10. Here, one class is inherited from more
than one class.

Circle Square Triangle

Fly Things Run Things

Helicopter Car Aeroplane

Shape

Draw ()
Erase ()

Figure 10: Multiple inheritance

1.5 AN OBJECT MODEL

In object oriented modeling system understanding and on the basis of that
identification of classes. Establishing relationship among different classes in the
system are the first and foremost activity. Here, we have a simple model of a
University System with respect to different levels of courses offered by the
University. As you can see in Figure11, we have given the basic classes of this
system.

This diagram covers different levels of students in the hierarchy. Similarly, for other
classes, such as Administration and Faculty, hierarchy level can be drawn to give a
broader view of whole system.

 17

Introduction to Object
Oriented Modeling

 University

Registration and
Evaluation

Administration Faculty

 Student

 PG StudenPG Student t Diploma Student UG Student

 MCA MBA M.Sc MA

PG Diploma UG Diploma

 BCA B. Sc BA B.Com

Figure 11: Object model for university system

1.6 BENEFITS OF OBJECT ORIENTED
MODELING

There are several advantages and benefits of object oriented modeling. Reuse and
emphasis on quality are the major highlights of OOM. OOM provides resistance to
change, encapsulation and abstraction, etc. Due to its very nature, all these features
add to the systems development:

• Faster development
• Increased Quality
• Easier maintenance
• Reuse of software and designs, frameworks
• Reduced development risks for complex systems integration.

The conceptual structure of object orientation helps in providing an abstraction
mechanisms for modeling, which includes:

• Classes
• Objects
• Inheritance
• Association etc.

1.7 INTRODUCTION TO OBJECT ORIENTED
ANALYSIS & DESIGN: TOOLS

Unified Modeling Language (UML) is a well accepted language for OOAD. It is used
for visualizing, specifying, constructing, and in final documentation. The basic
building blocks of UML used for OOAD are things, relationships, and diagrams.
Basically, the Unified Modeling Language focuses on the concepts of Booch, OMT,
and Object Oriented Software Engineering (OOSE). The result of these concepts is a
single, common, and widely usable modeling language for users of these and other

18

Object Oriented
Modeling and UML

methods. The Unified Modeling Language also promotes the concept of what can be
done with existing methods.

Many modern applications are being developed based on object oriented principles
such as classes, methods, and inheritance. To fulfil the needs of such developments,
CASE tools offer many benefits for developers building large-scale systems. CASE
tools enable us to abstract away from the mess of source code, to a level where design
and propose become more clear and easier to understand and modify.

For making and representing these features of the systems to be developed, some tools
are used. These tools support UML features and building blocks. Object modeling
CASE tools provide support for object oriented modeling notations and
methodologies, and they also generate parts of object oriented applications. New
versions of many object oriented CASE tools are beginning to address new languages
such as Java. Many of these object modeling CASE tools also support relational
databases by performing arts of logic, and in some cases, physical database modeling
and design, including schema generation and reverse engineering of RDBMS tables,
and other elements.

Here, we have tried to give a list collected from many sites and individual searches,
for UML modeling tools. Since UML is a fast growing engineering this list may keep
on changing all the time.

Action Semantics: This is a group of firms that have responded to the OMG’s
RFP to define the action semantics for UML.

ArgoUML: This is a domain-oriented design environment that provides cognitive
support of object oriented design. ArgoUML provides some of the same
automation features of a commercial CASE tool.

ARTiSAN Software: This provides a variety of UML based CASE tools,
including a real time modeling tool.
BridgePoint : This provide features of a real time UML modeling tool.

GDPro : this is a full suite of UML and code management tools.

MagicDraw UML: This has Full support for all UML diagrams: MagicDraw
RConverter allows you to convert these UML diagrams into MagicDraw: Activity,
Class, Collaboration, Component, Deployment, Sequence,State chart, Three-tiered,
and Use Case diagrams.

Rational Rose: IBM Rational RequisitePro is a powerful and easy-to-use tool for
requirements and use case management.

Visio 2000 Enterprise: It contains a UML suite that can build diagrams within
Visio.

Visual Paradigm: Visual Paradigm for the Unified Modeling Language
(VP-UML) is a UML CASE suite. The suite of tools is designed for a wide range
of users, including Software Engineers, System Analysts, for building large scale
software systems reliably through the use of the object oriented approach.

 Check Your Progress 3

1) What is inheritance?
………………………………………………………………………….…

………………………………………………………………………….….

2) Give an example of multiple inheritance.
…………………………………………………………………………..…

…………………………………………………………………………….

http://www.projtech.com/

 19

Introduction to Object
Oriented Modeling 3) Explain the benefit of OOM.

………………………………………………………………………….…

………………………………………………………………………….…

……………………………………………………………………………..

1.8 SUMMARY

In this unit we have discussed the basic notions of object orientation, and the need
for object oriented modeling. It is the basic characteristic of object orientation
which makes it possible to develop systems in such a way that the system is open
for reusability. In this unit, concepts of abstraction, encapsulation, polymorphism
and sharing of structure and behaviour are discussed.

Further, in this unit, we have discussed notions of class and object. We saw that
how inheritance, generalization/specialization, and associations are represented.
In this unit, a hierarchy of classes representing different levels of students in a
University system is representated, reuse and quality are mentioned as benefits of
OOM, and in the last section, some tools, which support UML designs are
mentioned.

1.9 SOLUTIONS/ANSWERS

Check Your Progress 1
1) Object oriented modeling is a approach through which modeling of the

systems are done by visualizing the system based on the real world concepts.
Object oriented modeling is language independent and generally used for
complex system development.

2) Steps involve in OOM are:

 System Analysis

System Design

Object Design and

Final implementation.

3) Structured approach of problem solving is based on the concept of
decomposition of system in to subsystem. In this approach of system
development readjustment of some new changes in the system is very
difficult. On the other hand in object oriented approach holistic view of
application domain is considered and related object are identified. Further
classification of objects are done. Object oriented approach give space for
further enhancement of the system without too much increase in systems
complexity.

Check Your Progress 2
1) Abstraction in object orientation is a concept which provide opportunity to

express essential properties of the object without providing much details of
implementation of these properties.

2) Association is used for establishing relationships between classes. Association
describe links between (among) classes. For example, if a professor works in
a university then it can be represented as

20

Object Oriented
Modeling and UML

Professor University

Association name

Works for

 Figure 12: Association of professor and university

3) Multiplicity in an association indicate the number of objects participate in a
relationship. For example in the association given in Figure 13 you can see that
one player can play for one team at a time so here multiplicity is 1.

11

Can play for

Multiplicity

Team Player

 Figure 13: Multiplicity in association
Check Your Progress 3

1) Inheritance is an object orientation concept which allow reusability of
design/code. Basic meaning of inheritance is that if one class is already defined
than another class which also passes the property of existing class can be
defined and inherit the property of existing class. For example, if a class named
student is defined and another class for Post Graduate students is to be defined
then PG Student class can inherit student class.

2) One example of multiple inheritance is a committee for students affair which

consist of faculty and administrative staff member.

Experstudent-Affair

Administration Faculty

Figure 14: Multiple inheritance

3) Major benefits of object oriented modeling is that development of the system
become fast, quality of the system is increase. It give freedom of use of existing
design and code. Help in development of complex system with less risk due to
the basic properties of object orientation which include class, objects and
inheritance.

 21

Object Oriented Analysis
UNIT 2 OBJECT ORIENTED ANALYSIS

Structure Page Nos.

2.0 Introduction 21
2.1 Objectives 21
2.2 Object Oriented Analysis 22
2.3 Problem Statement: An Example 25
2.4 Differences between Structured Analysis and Object Oriented Analysis 26
2.5 Analysis Techniques 27

2.5.1 Object Modeling
2.5.2 Dynamic Modeling
2.5.3 Functional Modeling

2.6 Adding Operations 34
2.7 Analysis Iteration 36

2.7.1 Refining the Ratio Analysis
2.7.2 Restating the Requirements

2.8 Summary 36
2.9 Solutions/Answers 37

2.0 INTRODUCTION

Object oriented analysis (OOA) is concerned with developing software engineering
requirements and specifications that expressed as a system’s object model composed
of a population of interacting objects. The concept of abstraction in object oriented
analysis (OOA) is important. Abstraction may be defined as: the characteristics of an
object which make it unique and reflect an important concept. Analysis is a broad
term, best qualified, as in requirements analysis (an investigation of the requirements)
or object oriented analysis (an investigation of the objects of the problem domain).
OOA views the world as objects with data structures and behaviors and events that
trigger operations, for object behavior changes. The idea is to see system as a
population of interacting objects, each of which is an atomic bundle of data and
functionality, (the foundation of object technology) and provides an attractive
alternative for the development of complex systems.

The problem statement is important for any analysis. It is a general description of the
user’s difficulties, and desires. The purpose of problem statement is to identify the
general domain in which you will be working.
In this Unit you will study various analysis techniques: object modeling, dynamic
modeling and functional modeling. You will also learn how add operations in system
and how to do refining of the analysis model.

2.1 OBJECTIVES
After going through this unit, you should be able to:
• define the concepts of the objects in the system;
• express required system behaviour in terms of business objects in the system,

and actions that the user can perform on them;
• understand how to define and analyze the problem statement;
• explain the purpose of object modeling;
• explain dynamic modeling;
• describe the event flow between objects and how to draw state diagrams of real

world problems;
• explain and understand the importance of functional model;
• explain how operations can be added in various analysis techniques, and
• explain the importance of iterating or refining the analysis model.

 22

Object Oriented
Modeling and UML 2.2 OBJECT ORIENTED ANALYSIS

In this section we will discuss basics of object oriented analysis with the help of object
oriented features.

Analysis

Analysis is not a solution of the problem. Let us see what actually object oriented
(OO) analysis. Analysis emphasizes an investigation of the problem and
requirements, for example, if a new online trading system is desired by a trader, there
may be questions such as, how will it be used? What are its functions?

If you start a project the first question about that project’ will be how do we get
started? Where do we begin?

The starting point for object oriented analysis is to identify candidate objects and their
relationships.

The first stage can be a simple brain-storming of the possible objects. Then one
method is to go through all the nouns in any documentation about the world you are
analysing, and considering these as candidate objects of the system. Also, you can use
the alternative technologies for developing software engineering requirements and
specifications that include functional decomposition, essential systems analysis, and
structured analysis.

The Process of Development

The approach to development can be an iterative one. It involves repeated refinement
of the object model. The process needs to be controlled by an appropriate project
management process, involving reviews and check pointing at the levels of:

• Analysis
• Design
• Implementation
• Post Implementation Review

Object Orientation and Analysis

An Object is something that exists within the problem domain that can be identified
by data and/or behaviour. An example of an object is a car. The data of a car could be
the wheel, brake, seat, etc. The behaviour of the car would be to drive on roads, its
speed, etc.

Object oriented analysis is the concept which actually forces you to think in terms of
the application domain when its behaviour and data known to you.

In OOA the primary focus on identifying objects from the application domain, then
fitting procedures around them.

For example, in the case of the flight information system, the objects would include
Plane, Flight, and Pilot, etc.

The object model has many aspects, which are associated with OO concepts.
Now we will discuss the following principle of OO.

Abstraction, Encapsulation, Identity, Modularity, Hierarchy,
Typing, Concurrency, and Persistence

Abstraction

You understand the term object. Now, let us see how problems are seen as objects,
and find their associated data and behaviour. You will notice that an object is a real
life entity, or abstraction.

 23

Object Oriented Analysis In our daily life we deal with complexity by abstracting details away.

Let us see this with an example of:

Driving a car does not require knowledge of internal combustion engine. It is
sufficient to think of a car as simple transport.

In simple term, abstraction means to focus on the essential, inherent aspects of an
entity, ignoring its accidental properties. Abstraction is a normal process that we do
everyday. When you view the world, you can not possibly take in every minute detail,
so you concentrate on the aspects that are important.

An abstraction is a simplified description of a system that captures the essential
elements of that system (from the perspective of the needs of the modeler), while
suppressing all other elements.

Encapsulation

This separates the interface of an abstraction from its implementation. Taking the
above example of a car, we can now categorize as:

Abstraction Car
Interface Steering, pedals, controls
Implementation Generally, you don’t know

Encapsulation also means data hiding, which consists of separating the external
aspects of an object, which are accessible to other objects.

Now let us take a example of the Stack.

A Stack abstraction provides methods like push (), pop (), isEmpty(), isFull(). The
Stack can be implemented as a singly linked list, or a doubly linked list, or an array, or
a binary search tree. This feature is called encapsulation. It hides the details of the
implementation of an object.

The Benefits of Encapsulation

To hide the details of a class, you can declare that data or implementation in its private
part so that any other class clients will not be able to know about. It will have the
ability to change the representation of an abstraction (data structures, algorithms)
without disturbing any of its clients. The major benefit of encapsulation is that you.

By Encapsulation

You can delay the resolution of the details until after the design.
Keep your code modular.

Object Identity

Object identity is a property of an object that distinguishes the objects from all other
objects in the applications. With object identity, objects can contain, or refer to other
objects. You can create an object identity in three ways:

1) You can refer as memory address in programming languages.

2) Assign identifier keys in the database.

3) By user-specified names, used for both programming and database.

In a complete object oriented system each object is given an identity that will be
permanently associated with the object irrespective of the object’s structural or state
transitions. The identity of an object is also independent of the location, or address of
the object. Object identity provides the most natural modeling primitive to allow the
“same object to be a sub-object of multiple parent objects”.

 24

Object Oriented
Modeling and UML

Modularity

Modularity is closely tied to encapsulation; you may think of modularity as a way of
mapping encapsulated abstractions into real, physical modules. It is a property of a
system that has been decomposed into cohesive and loosely coupled modules.

Cohesion and coupling gives two goals for defining modules. You should make a
module cohesive (shared data structures, similar classes) with an interface that allows
for minimal inter-module coupling.

It is important to remember that the decisions concerning modularity are more
physical issues, whereas the encapsulation of abstractions is logical issues of design.

Hierarchy

This is ranking or ordering of abstraction.
Hierarchy is decided by using the principle of ‘divide and conquer’. You can describe
complex objects in terms of simpler objects. This is the property of object oriented
analysis (OOA) which enables you to reuse the code.

You can place an existing class directly inside a new class. The new class can be made
up of any number and type of other objects, in any combination that is needed to
achieve the desired functionality. This concept is called composition (or more
generally, aggregation). Composition is often referred to as a “has-a” relationship or
“part-of” relationship, for example, in “automobile has an engine” or “engine is part
of the automobile.”

Typing

This enforces object class such that objects of different classes may not be
interchanged. In other words, class can be visualized as a type. Remember that there
are two kinds of typing. This typing does not mean the way you usually type the
letters.

Strong Typing: When any operation upon an object (which is defined) can be
checked at compile time, i.e., type is confirmed forcefully.

Weak Typing: Here, operations on any object can be performed, and you can send
any message to any class. Type confirmation is not essential, but in these type of
language more errors at execution time may occur.

Concurrency

The fundamental concept in computer programming is the idea of handling more than
one task at a time. Many programming problems require that the program be able to:

1) Stop what it’s doing

2) Currently deal with some other problem, and

3) Return to the main process. There is a large class of problems in which you
have to partition the problem into separately running pieces so that the whole
program can be more responsive. Within a program, these separately running
pieces are called threads, and the general concept is called multithreading.

Currently, if you have more than one thread running that is expecting to access the
same resource then there is a problem. To avoid this problem, a thread locks a
resource, completes its task, and then releases the lock so that someone else can use
the resource. It can lock the memory of any object so that only one thread can use it at
a time. It is important to handle concurrent running programs/threads properly.

Persistance

When you create an object, it exists for as long as you need it, but under no
circumstances do object exist when the program terminates. While this makes sense at
first, there are situations in which it would be incredibly useful if an object could exist

 25

Object Oriented Analysis and hold its information even while the program is not running. When, next time you
start the program, the object would be there and it would have the same information it
had the previous time the program was running. Of course, you can get a similar effect
by writing the information to a file or to a database, but in the spirit of making
everything an object it would be quite convenient to be able to declare an object
persistent and have all the details taken care of for you.

2.3 PROBLEM STATEMENT: AN EXAMPLE
You must understand here that you are looking for a statement of needs, not a
proposal for a solution. OOA specifies the structure and the behaviour of the object,
that comprise the requirements of that specific object. Different types of models are
required to specify the requirements of the objects. These object models contain the
definition of objects in the system, which includes: the object name, the object
attributes, and the objects relationships to other objects.

As you know, an object is a representation of a real-life entity, or an abstraction. For
example, objects in a flight reservation system might include: an airplane, an airline
flight, an icon on a screen, or even a full screen with which a travel agent interacts.
The behaviour, or state model describes the behavior of the objects in terms of the
states of the object and the transitions allowed between objects, and the events that
cause objects to change states.

These models can be created and maintained using CASE tools that support the
representation of objects and object behaviour.

You can say that the problem statement is a general description of the user’s
difficulties, desires, and its purpose is to identify the general domain in which you will
be working, and give some idea of why you are doing OOA.

It is important for an analyst to separate the true requirements from design and
implementation decisions.

Problem statement should not be incomplete, ambiguous, and inconsistent. Try to
state the requirements precisely, and to the point. Do not make it cumbersome.

Some requirements seem reasonable but do not work. These kind of requirements
should be identified. The purpose of the subsequent analysis is to fully understand the
problem and its implications, and to bring out the true intent of the Client.

L Check Your Progress 1

1) Give two benefits of Reuse of Code.

……………………………………………………………………………………

….………………………………………………………………………………...

..

2) Give an example of enforcement in Typing.

……………………………………………………………………………………

….………………………………………………………………………………...

……………………………………………………………………………………

3) What are the benefits of OOA technology?

……………………………………………………………………………………

….………………………………………………………………………………..

……………………………………………………………………………………

 26

Object Oriented
Modeling and UML

4) Briefly explain what is to be done while defining the problem statement.

……………………………………………………………………………………

….……………………………………………………………………………...…

……………………………………………………………………………………

You are already familiar with structured analysis. Now, this is the appropriate time to
have a comparison of OOA and Structured analysis.

2.4 DIFFERENCES BETWEEN STRUCTURED
ANALYSIS AND OBJECT ORIENTED
ANALYSIS

Object oriented analysis design (OOAD) is basically a bottom up approach which
supports viewing the system as a set of components (objects) that can be logically
kept together to form the system.

Advantages and Disadvantages of Object Oriented Analysis and Design

Advantages:

The OO approach inherently makes each object a stand alone component that can be
reused not only within a specific stat problem domain, but also is completely different
problem domains, having the requirement of similar objects.

The other main advantage of object oriented (OO) is the focus on data relationships.
You cannot develop a successful system where data relationships are not well
understood. An OO model provides all of the insight of an ER diagram and contains
additional information related to the methods to be performed on the data. We will
have more detailed discussion on this aspects in Block 3 of this Course.

Disadvantages:

You know that OO methods only build functional models within the objects. There is
no place in the methodology to build a complete functional model. While this is not a
problem for some applications (e.g., building a software toolset), but for large
systems, it can lead to missed requirements. You will see in Unit 3 of this course.
“Use cases” addresses this problem, but since all use cases cannot be developed, it is
still possible to miss requirements until late in the development cycle.

Another disadvantage of the object oriented analysis design (OOAD) is in system
modeling for performance and sizing. The object oriented (OO) models do not easily
describe the communications between objects. Indeed, a basic concept of object
oriented (OO) is that the object need not know who is invoking it. While this leads to
a flexible design, performance modeling cannot be handled easily.

The object oriented (OO) analysis design itself does not provide support for
identifying which objects will generate an optimal system design. Specifically, there is
no single diagram that shows all of the interfaces between objects. You will study
object oriented analysis design (OOAD) diagrams in Unit 3 of this course. As you
know, coupling is a major factor in system complexity, not having this information
makes architecture component selection a hit or miss proposition.

Advantages and Disadvantages of Structured Analysis

With experience, you will come to know that most customers understand structured
methods better than object oriented (OO) methods. Since one of the main reasons of
modeling a system is for communication with customers and users, there is an
advantage in providing structured models for information exchange with user groups
or customers.

 27

Object Oriented Analysis In fact, specifications are typically in the form of a simple English language statement
of Work and Requirement Specification. Therefore, the system to be built, must be
understood in terms of requirements (functions the system must perform), that is why
this naturally leads to a structured analysis, at least at the top level. Specifically
structured methods (functional decomposition) provide a natural vehicle for
discussing, modeling, and deriving the requirements of the system.

The disadvantage with structured methods is that they do not readily support the use
of reusable modules. The top down process works well for new development, but does
not provide the mechanisms for “designing in” the use of existing components. The
top down process of functional decomposition does not lead to a set of requirements
which map well to existing components.

When the requirements do not map cleanly, you have two choices: either you do not
use the existing components, or force fit the requirements to the existing components
and “somehow” deal with the requirements which are only partially covered by the
existing components, which does not lead to a good successful system. Now, we will
discuss how actually object oriented analysis (OOA) system is performed.

2.5 ANALYSIS TECHNIQUES

In this section we will see how classes re identified, and their applications with the
help of basic modeling techniques.

2.5.1 Object Modeling

Object modelling is very important for any object oriented development, object
modeling shows the static data structure of the real world system. Basically, object
modeling means identifying objects and classes of a system, or you can say that it
describes real world object classes and their relationships to each other. You can
develop an object model by getting information for the object model from the problem
statement, expert knowledge of the application domain, and general knowledge of the
real world. Object model diagrams are used to make easy and useful communications
between computer professionals and application domain experts.

To develop an object model first identify the classes and their associations as they
affect the overall problem structure and approach. Then prepare a data dictionary.
i) Identify associations between objects.
ii) Identify attributes of objects and links.
iii) Organise and simplify object classes using inheritances.

Then you verify that access paths exist for likely queries

iv) Iterate and refine the model, and
v) Group classes into modules.

Identifying Object Classes

You should always be careful while identifying relevant object classes from the
application domain. Objects include physical entities in a system like buildings,
employees, department, etc. Classes must make sense in the application domain. At
this stage you should avoid computer implementation constructs, such as linked lists
and subroutines.

Some classes are implicit in the application domain, so you need to find out by
understanding the problem well.

Action-object matrix: A matrix showing how update actions affect objects. It may be
considered to be part of the user object model, as it summarizes user object action
definitions in a tabular view.

 28

Object Oriented
Modeling and UML

Process of this whole activity is like:

Check for multiple models

• Identify objects
• Create user object model diagram
• Define user object attributes
• Define user object actions
• Create action-object matrix
• Check for dynamic behavior
• Review glossary.

Some notations for user object model:
Notation Meaning

 Object name

 Relationship name

Subtype
name

Subtype

Aggregation

One-to-one

many-to-many

One- to-many

Object subtype

Association relationship

Object Type

Figure 1: User Object Model Notations

Let us see the example in which we will discuss how concepts are implemented:
To illustrate the object modeling technique to you by taking the very common
example of the tasks associated with using a telephone set:

Answer the “phone
Hear the “phone ringing. [Ringer]
Identify the ringing “phone. [Receiver Unit]
Pick up the handset. [Handset]
Talk to the caller. [Other party]
Replace the handset. [Handset]
Make a ‘phone call.
Pick up the handset. [Handset]
Listen for the dialing tone. [Exchange]

 29

Object Oriented Analysis ‘Dial’ the number. [Dial]
Listen for the ringing tone. [Receiver Unit]
Talk to the person answering. [Other party]
Replace the handset. [Handset]

On the basis of above information, the objects/actions that may be identified from
this are:

Receiver Unit
Identify
Ringer
Hear
Handset
Pick up
Replace
Other party
Talk with
Exchange
Listen to
Dial
Enter number
The attributes of these identified objects are identified as:
Receiver Unit
Identity (phone number)
Status (ringing, engaged)
Ringer
Ringing (true, false)
Handset
Hook (on, off)
Other party
Status (caller, answered)
Exchange
Tone (dead, dialing, other)
Dial
Status (empty, number entered)

You can see the User Object Model diagram produced from this given in Figure 2.

 Connected to

 Connected to

Other party Dial Handset

Exchange
Receiver
Unit

Ringer

Figure 2: User object Model for Telephone set

2.5.2 Dynamic Modeling

You know that computer systems are built from objects which respond to events.
External events arrive at the boundary of the system; you understand the concept of
events.

For example, whenever you click with your mouse on the desktop or the canvas area
some action is triggered (you get some response back).

 30

Object Oriented
Modeling and UML

In Dynamic modeling you examine “a way of describing how an individual object
responds to events, either internal events triggered by other objects or external
events triggered by the outside world”.

Dynamic modeling is elaborated further by adding the concept of time: new attributes
are computed as a function of attribute changes over time.

Before you define the dynamic behaviour of user objects. You should know the
following:

The Inputs are:

User object model which comprises objects, attributes, actions and relationships.
Task model: from which significant object states may be identified.
Products

Dynamic model: A model of the dynamic behaviour of a user object. It defines
significant states of the user object, the way that actions depend on the state, and
affect the state.

The dynamic model consists of a dynamic model diagram, showing states and
transitions and supplementary notes, specifying states and actions in more detail.

Process of Dynamic modeling:

• Analyse applicability of actions

• Identify object states

• Draw dynamic model diagram

• Express each state in terms of object attributes

• Validate dynamic model

• Concepts.

Dynamic modeling: state diagrams

We will study this in detail in Block 3 of this course.

Generally, a state diagrams allows you to further explore the operations and attributes
that need to be defined for an object. They consist of sets of states which an object is
in, and events which take the object from one state to another.

State: An object may have one or more states−stable points in its life, expressed by the
object’s attributes and relationships.

Event/action: Something that happens to an object. Atomic, in that it either has
happened or it hasn’t. An event causes an action.

Transition:

A jump between states, labeled with the corresponding action.

Notations for state diagram are shown below in Figure 3:

 A state

 A transition
 An initial State
 A final state

Statename

Figure 3: Notation for State Diagram

 31

Object Oriented Analysis A simple example using these notation is shown below in Figure 4.

 Return

 Acquire Sell

 Return Borrow

On Loan

In Library

Figure 4: A simple State Diagram

States may be seen as composite states: a collection of states treated as one state at a
higher level on analysis. In the example above, the state “In Library” is actually
composed of a sequence of sub-states which the library staff, if not borrowers would
need to know about.

Renew

 Return Borrow

 Acquire

Reissue

Withdraw

Classify

On ShelvesWithdrawn

In Acquisitions

On Loan

Figure 5: Composite States

Basically any system which you can reasonably model on a computer jumps from
state to state.

The level of state decomposition must be decided by judgement. A too fine grained
model is inappropriate; for example, modeling all the possible ages of an employee as
individual states. Also, a gross decomposition is useless; for example, modeling an
employee as employed or not.

You can ask whether all objects of world have behaviour which can be modeled.

Of course, not all objects have behavior worth modeling. Consider our example from
the field of object oriented nursery rhymes, the sad story of Humpty Dumpty. Clearly,

you would not like to model such trivial examples.

Basically you need to construct a state transition diagram for every object with
significant behaviour. You need not construct one for anything with trivial behaviour.

The reason for doing this is to identify further operations and attributes, to check the
logical consistency of the object and to more clearly specify its behaviour.

 32

Object Oriented
Modeling and UML

All the best notations can be used to describe the process they facilitate.

Now we have the basic ideas of object models and dynamic models, our approach to
analysis and design (so far) can be summarised as:

Describe state
transitions

Describe event traces

Describe Objects

Figure 6: Objects and State transitions

Note: You should also match the events between state diagrams to verify consistency.
Till so far, you have been introduced to object modeling, and dynamic modeling.
Now, we will see what Function modeling is:

2.5.3 Functional Modeling
You know that Data flow modeling is a common technique used for the analysis of a
problem in software engineering. It is exceptionally useful for analyzing and
describing systems where there is a large amount of calculation involved.

Data flow models consist of a number of processes which exchange information. A
process transforms information it receives, and passes the transformed information on
to other processes or to objects in the system. Data flow models can be used to
uncover new operations and new attributes for the object model. Sometimes, new
objects can be discovered too.

Basically you can state that the functional model shows how values are computed. It
describes the decisions or object structure without the regard for sequencing.
It gives you dependency between the various data and the functions that relate them,
giving the flow of data.

Each process needs to be implemented as an operation in one or more of the objects.
Each data item arising from an object must have a corresponding attribute, or set of
attributes in the source object. The data flow diagram (DFD) corresponds to activities
or actions in the state diagrams of the classes.

That is why it is suggested to construct the functional model after the object and
dynamic models.

Now, let us discuss about the creation of the DFD and the functional model.

The approach to data flow diagramming should be as follows:

• Create a data flow diagram for each of the major outputs of the system
• Work back from the outputs to the inputs to construct the diagram
• Add new objects where necessary to the object model as you discover the need

for them in the data flow modeling add new operations and attributes to the
object model as you discover the need for them in the data flow modeling.

One thing you have to remember is that the data flow diagram is not used as a basis
for devising the structure of the system.

Steps in constructing a Functional Model

• Identify input and output values
• Build data flow diagrams showing functional dependencies
• Describe functions
• Identify constraints
• Specify optimisation criteria.

 33

Object Oriented Analysis Identifying Input and Output Values

First, identify what data is going to be used as input to the system, and what will be
the output from the system. Input and output values are parameters of events between
the system and the outside world. You must note that Input events that only affect the
flow of control, such as cancel, terminate, or continue. They do not supply input
values. For example, supplier code, name, product description, rate per unit, etc. are
the inputs to a sales system.

Build data Flow diagrams showing functional dependencies

Data flow diagrams are useful for showing the functional dependencies. In data flow
diagrams processes are drawn as bubbles, each bubble containing with the name of the
process inside. Arrowhead lines are used to connect processes to each other, and to
objects in the system. The lines are label with the information that is being passed.
Objects are drawn as rectangular boxes, just as in the object model, but usually with
just the name of these objects and not the attributes and operations.

i) iii) Sales

Quantity delivered

Calculate quantity delivered to customer

Product

name price vat rate

ii) iv)

Customer

Product line discount
quantity discount

Calculate product discount
calculate quantity discount

Invoice

Calculate line item discount
Calculate total
Deduct quantity discount
Print

Figure 7: Some objects in figure 7: a simple DFD is given for sales system

Let us look at a simple example:

Discount and invoice Final
Total

Discounted Line
Total

Customer
Product Discount

Product VAT Rate

Product Price
Total Deliveries

Product Discount Rate

invoice

Calculate
Total

Customer Calculate order
line discount

Calculate order
line basic cost

Product

Sales

Calculate
Quantity
Discount

Line Total

Quantity
Discount Rate

Figure 8: DFD for Sales System

 34

Object Oriented
Modeling and UML

The next stage is to devise operations and attributes to support the calculations.

Describe functions

After you have roughly designed the data flow diagram, you can write a description of
each function, and you can describe the function in any form such as, mathematical
equations, pseudo code, decision tables, or some other appropriate form. You need not
know the implementation of the function, but what it does. The description can be
declarative or procedural.

A declarative description specifies the relationship between the input and output
values, and relationship among the output values.

A procedural description specifies a function by giving an algorithm to compute it.
The purpose of the algorithm is only to specify what the function does.

Identifying Constraints Between Objects

In a system, there are some boundaries to work on. Boundaries or Constraints are the
functional dependencies between objects which are not related by an input-output
dependency. You have to find out the constraints between the objects. Constraint has
different behavior at different times. It can be on two objects at the same time,
between instances of the same object at different times (an invariant), or between
instances of different objects at different times.

You can define constraints as Preconditions (input values) and PostConditions (output
values). Preconditions on functions are constraints that the input values must satisfy.
Post conditions are constraints that the output values must satisfy to hold. State the
conditions under which constraints hold.

Specifying Optimisation Criteria

Specify values to be maximized, minimized, or optimized. You can understand it as
the way you normalize the data in the database. For example, you should minimize the
time an account is locked for concurrency reasons. If locks are needed, then it is
extremely important to minimize the time that an entire bank is locked for
concurrency reasons.

 Check Your Progress 2

1) Explain how you can define an object model of a system.

……………………………………………………………………………………

….……………………………………………………………………………..…

…………………………………………………………………………………...

2) Show the basic dynamic model of telephone.

……………………………………………………………………………………

.….………………………………………………………………………………

2.6 ADDING OPERATIONS

Whenever you look at the operations in OOPs you find queries about attributes or
associations in the object model (such as student.name), to events in the dynamic
model (such as ok, cancel), and to functions in the functional model (such as update,
save).

You can see operations from the object model. It includes reading and writing
attribute values and association links. In the object model operations are presented
with an attribute. During analysis nothing is private, you assume that all attributes are
accessible.

 35

Object Oriented Analysis Accessing from one object to another through the object model can be referred to as
“pseudo-attribute” like Account.Bank, where account and bank are two separate
objects of their respective classes.

Operations from events

During analysis, events which are sent to the target objects. An operation on the object
are presented as labels on transitions and should not be explicitly listed in the object
model.

Events can be expressed as explicit methods.

You can also implement events by including event handler as part of the system
substrate.
Operations from State Action and Activities
You must see that State actions and activities are actually functions, which can be
defined as the operations on the object model.
Operations from Functions
As you know, function are actually operations on object. These
functions should be simple and summarized on the object model. Organise the
functions into operations on objects. For example, the select operations are really path
traversals in the object model. The operations like withdrawal-money, verify-
password are the operations on class Account of Bank Management system.

You can write as:
account: withdraw (code, amount)->status
account: deposit (code, amount)->status.

 Check Your Progress 3

1) Describe how you can simplify Operations.

……………………………………………………………………………………

.………………………………………………………………………………..….

……………………………………………………………………………………

2) Give an example of operations from State Actions and Activities.

……………………………………………………………………………………

….………………………………………………………………………………...

……………………………………………………………………………………

3) Give an example of Operations from functions of a bank.

……………………………………………………………………………………

….………………………………………………………………………………..

……………………………………………………………………………………

4) How do you see the final model after iterative analysis?
……………………………………………………………………………………

….………………………………………………………………………………...

……………………………………………………………………………………

5) Why is iterative analysis of any problem needed?
……………………………………………………………………………………

….………………………………………………………………………………..

……………………………………………………………………………………

Iteration of analysis is important. Let us see how OOA apply iteration

 36

Object Oriented
Modeling and UML 2.7 ANALYSIS ITERATION

To understand any problem properly you have to repeat the task which implies that
analysis requires repetition. First, just get the overview of the problem, make a rough
draft, and then, iterate the analysis according to your understanding. Finally, you
should verify the final analysis with the client or application domain experts. During
the iteration processes refining analysis and restating of requirement takes place.

2.7.1 Refining the Ratio Analysis

Basically, refinement leads to purity. So to get a cleaner, more understandable and
coherent design, you need to iterate the analysis process.

• Reexamine the model to remove inconsistencies, and imbalances with and
across the model.

• Remove misfit, and wrong concepts from the model.
• Refining sometimes involves restructuring the model.
• Define constraints in the system in a better way.
• You should keep track of generalizations factored on the wrong attributes.
• Include exceptions in the model, many special cases, lack of expected

symmetry, and an object with two or more sets of unrelated attributes, or
operations.

• You should remove extra objects or associations from the model. Also, take
care to remove redundancy of objects and their extra attributes.

2.7.2 Restating the Requirements
To have clarity of the analytical model of the system you should state the
requirements specific performance constraints with the optimization criteria in one
document verify in the other document. You can state the method of a solution.

Verify the final model with the client. The requirement analysis should be confirmed
and clearly understood by the client.

The impractical, or incorrect, or hypothetical objects that do not exist in the real world
should be removed from the proposed system.

You must note that the analysis model is the effective means of communication with
application experts, not computer experts. In summary, the final model serves as the
basis for system architecture, design, and implementation.

2.8 SUMMARY

In this Unit you have learned that the goal of analysis is to understand the problem
and the application domain, so that you come out with a well cohesive design. There
is no end or border line between the analysis and the design phase in software
engineering. There are three objectives of the analysis model:

Object oriented analysis (OOA) describes what the customer requires, it establishes as
basis for the creation of a software design, and it defines a set of requirements that can
be validated.

You also remember that the requirement analysis should be designed in such a way
that it should tell you what to be done, not how it is implemented.

The object model is the principal output of an analysis and design process.

Dynamic modeling is elaborated further by adding the concept of time: new attributes
are computed as a function of attribute changes over time. In this unit, after defining
the scenario of typical and exceptional sessions, identify events followed by the
building of state diagrams for each active object showing the patterns of events it

 37

Object Oriented Analysis receives and sends, together with actions that it performs. You should also match the
events between state diagrams to verify consistency.

You have learned that a functional model shows how values are computed; it
describes the decisions, or object structure without regard for sequencing.

It gives you dependency between the various data and the functions that relate them,
giving the flow of data. Here you construct the data flow diagram which interacts with
internal objects and serves as, data stores between iterations. You also specify the
required constraints, and the optimisation criteria.

You have seen that refining and restating will give you more clarity of the analytical
model of the system.

2.9 SOLUTIONS / ANSWERS

Check Your Progress 1

1) Reusing the implementation. Place an existing class directly inside a new
class. The new class can be made up of any number and type of other objects, in
any combination that is needed to achieve the desired functionality. This
concept is called composition (or more generally, aggregation). Composition is
often referred to as a “has-a” relationshp or “part-of” relationship, as in
“automobile has an engine” or “engine is part of the automobile.”

Reusing the interface. Take an existing class and make modifications or
additions to achieve desired functionality. This concept is called inheritance.
The original class is called the Base class or Parent class and the modified class
is called the Derived or Inherited or Sub or Child class.

2) You can understand the concept of enforcement as it make sure objects of
different classes may not be interchanged as follows:

 Example: Vegetable v; Fruit f; Mango m;

This implies ‘v’ is variables of class Vegetable, ‘f’ of class Fruit and ‘m’ of
class Mango. Typing ensures that value of ‘f’ cannot be assigned to ‘v’.
However, if Mango extends Fruits, then ‘f’ can be assigned a value of ‘m’. The
variable of a sub class can be assigned to variable of super class, but not the
other way around, and ‘m’ cannot be assigned a value of ‘f’.

3) Using the OOA technology can yield many benefits, such as:

i) Reusability of code
ii) Productivity is gained gains through direct mapping
iii) Maintainability, through this simplified mapping to the real world is

possible.

4) To define the Problem Statement of a system, define what is to be done, and
how you are going to implement that. Your statement should include the
mandatory features, as well the optional features of the system to be developed.

You should include:
What is the problem and its scope,
What is needed
Application context
Assumptions
Performance needs.

Check Your Progress 2

1) A list of terms which will be used by end users to describe the state and
behaviour of objects in the system.

 38

Object Oriented
Modeling and UML

Different user classes may require different mental models of the objects in the
system. This includes:
What type of objects there are (user objects).
What information the user can know about an object of a particular type (user
object attributes).
How the objects may be related to other objects (relationships).
Object types with ‘subtypes’ which have additional specialised actions or
attributes, i.e., User object, Container objects, User object action, User object
subtype.
A model of the business objects which end users believe interact with in a GUI
system.

On Hook
Inactive

On Hook
Ringing

Off Hook
Connected

Off Hook
Inactive

Ring in

Time Out

Pick up Hung up on

Off Hook
Call

Off Hook
Dialing

Off Hook
Ringing
Out

Pick Up

Pick down
Dialing Tone

Error

 Time out

Engaged No Dialing tone

Put Down

Pick Up

Ringing
Tone

Figure 9: Dynamic Model of Telephone

Check Your Progress 3

1) To simplify the operation, one should use inheritance, where possible, to reduce
the number of distinct operations. Introduce new superclasses as needed to
simplify the operations, but they should not be forced or unnatural.
Locate each operation at the correct level in the class hierarchy.

2) For example, in the bank the activity, verify account code and verify password

3) For the creation of a saving account, you may write:
bank::: create –savings-account (customer)->account.
For the operation of checking account, you can write:

 bank:: :create-checking-account

4) The final model serves as the basis for system architecture, design, and
implementation.

5) The iterative analysis is required to get cleaner, more understandable, and
coherent design.

 39

 Using UML

UNIT 3 USING UML

Structure Page Nos.

3.0 Introduction 39
3.1 Objectives 40
3.2 UML: Introduction 40
3.3 Object Modeling Notations: Basic Concepts 41
3.4 Structural Diagram 47

3.4.1 Class Diagram
3.4.2 Object Diagram
3.4.3 Component Diagram
3.4.4 Deployment Diagram

3.5 Behavioral Diagrams 50
3.5.1 Use Case Diagram
3.5.2 Interaction Diagram
3.5.3 Activity Diagram
3.5.4 Statechart Diagram

3.6 Modeling with Objects 55
3.7 Summary 56
3.8 Solutions/Answers 56

3.0 INTRODUCTION

One of the major issues in software development today is quality. Software needs to
be properly documented and implemented. The notion of software architecture was
introduced for dealing with software quality. For successful project implementation
the three essential components are: process, tools and notations. The notation serves
three roles:
• as the language for communication,
• provide semantics to capture strategic and tactical decisions,
• to offer a form that is concrete enough to reason and manipulate

ToolsProcess

Notation

Figure 1: Components of project implementation

Architectural description languages (ACLs) have been developed for architectural
description in analysis and design process. Important architectural description
languages are Rapide, Unicorn, Asesop, Wright, ACME, ADML and UML. Currently,
Universal Modeling Language (UML) is a de facto standard for design and
description of object oriented systems, and includes many of the artifacts needed for
architectural description, such as like processes, nodes, views, etc.

 40

Object Oriented
Modeling and UML 3.1 OBJECTIVES

After going through this unit, you should be able to:

• trace the development of UML;
• identify and describe the notations for object modeling using UML;
• describe various structural and behavioral diagrams;
• list the characteristics of various static and dynamic diagrams, and
• understand the significance of different components of UML diagrams.

In this Unit we will discuss object modeling notations, structured diagrams and
behavioral diagrams of systems.

3.2 UML: INTRODUCTION
The Unified Modeling Language (UML) is used to express the construct and the
relationships of complex systems. It was created in response to a request for proposal
(RFP) from the Object Management Group (OMG). Earlier in the 1990s, different
methodologies along with their own set of notations were introduced in the market.
The three prime methods were OMT (Rumbaugh), Booch and OOSE (Jacobson).
OMT was strong in analysis, Booch was strong in design, and Jacobson was strong in
behavioral analysis. UML represents unification of the Booch, OMT and OOSE
notations, as well as are the key points from other methodologies. The major
contributors in this development shown in Figure 2.

UML is an attempt to standardize the artifacts of analysis and design consisting of
semantic models, syntactic notations and diagrams. The first draft (version 0.8) was
introduced in October 1995. The next two versions, 0.9 in July 1996 and 0.91 in
October 1996 were presented after taking input from Jacobson. Version 1.0 was
presented to Object Management Group in September 1997. In November 1997, UML
was adopted as standard modeling language by OMG. The current version while
writing this material is UML 2.0.

 UML
 Development

 Fusion

 Embley

 Gamma

 Mellor

 Odell

 Brock
 Harel

 Mayer

 Jacobson
 Rumbaugh

 Booch

Figure 2: The Input for UML development

The major features of UML are:
• defined system structure for object modeling
• support for different model organization
• strong modeling for structure and behavior
• clear representation of concurrent activities
• support for object oriented patterns for design reuse.

The model for the object oriented development could be shown as in Figure 3. It
could be classified as static/dynamic and logical/physical model.

 41

 Using UML

 Physical Model

 Logical Model

 Static Model

 Dynamic Model

Class Structure

Object Structure

Module Structure

Process Structure

Figure 3: The Model for Object oriented development

The Logical view of a system serves to describe the existence and meaning of the key
abstractions and the mechanism that form the problem space, or that define the system
architecture.

The Physical model describes the concrete software and hardware components of the
system’s context or implementation.

UML could be used in visualizing, specifying, constructing and documenting object
oriented systems. The major building blocks of UML are structural, behavioral,
grouping, and annotational notations. Let us discuss these blocks, one by one.
a. Structural Notations: These notations include static elements of a model. They

are considered as nouns of the UML model which could be conceptual or
physical. Their elements comprises class, interface, collaboration, use case,
active class, component, and node. It also includes actors, signals, utilities,
processes, threads, applications, documents, files, library, pages, etc.

b. Behavioral Notations: These notations include dynamic elements of a model.
Their elements comprises interaction, and state machine. It also includes
classes, collaborations, and objects.

c. Grouping Notations: These notations are the boxes into which a model can be
decomposed. Their elements comprises of packages, frameworks, and
subsystems.

d. Annotational Notations: These notations may be applied to describe,
illuminate, and remark about any element in the model. They are considered as
explanatory of the UML. Their elements comprised of notes which could be
used for constraints, comments and requirements.

UML is widely used as it is expressive enough, easy to use, unambiguous and is
supported by suitable tools.

3.3 OBJECT MODELING NOTATIONS: BASIC
CONCEPTS

A system is a collection of subsystems organised to accomplish a purpose and
described by a set of models from different viewpoints.
A model is a semantically closed abstraction of a system which represents a complete
and self-consistent simplification of reality, created in order to better understand the
system.
A view is a projection into an organisation and structure of a system’s model, focused
on one aspect of that system.
A diagram is a graphical presentation of a set of elements.

 42

Object Oriented
Modeling and UML

A classifier is a mechanism that describes structural and behavioral features. In UML
the important classifiers are class, interface, data type, signals, components, nodes, use
case, and subsystems.
A class is a description of a set of objects that share the same attribute, operations,
relationships, and semantics. In UML, it is shown by a rectangle.
An attribute is a named property of a class that describes a range of values that
instances of the property may hold. In UML, they are listed in the compartment just
below that class name.
An operation is the implementation of a service that can be requested from any object
of the class to affect behavior. In UML, they are listed in the compartment just below
that class attribute.

The notation for class, attribute, and operations is shown as:

Figure 8: Node and relationship between nodes

Class Name

Attribute: Type = initial Value

Operation (arg list): return type

Figure 4: Class with attributes and operations

An interface is a collection of operations that are used to specify a service of a class
or a component.

<<interface>>
Comparable

Message

Figure 5: Realizing an interface

A signal is the specification of an asynchronous stimulus communicated between
instances.
A component is a physical and replaceable part of the system that confirms to, and
provides the realization of a set of interfaces. In UML, it is shown as a rectangle with
tabs. The notation for component and interface is shown as:

 Component

Figure 6: Component

 Component

 Component

 Figure 7: Components and Server

A node is a physical element that exists at runtime, and represents a computational
resource generally having a large memory and often process capability. In UML, it is
shown as a cube. The notation for node is shown as:

Node Node Node Name

 43

 Using UMLA use case is a description of a set of sequence of actions that a system performs to
yield an observable result that is of a value to an actor. The user is called actor and the
process is depicted by use case. The notation for use case is shown as:

Actor

<<user>>

Actor

Use Case

Use Case

Use Case

Use Case

Use Case

Use Case

Figure 9: Relationship between actor and use case

A subsystem is a grouping of elements of which some constitute a specification of the
behavior offered by other contained elements.

An object is an instance of a class. The object could be shown as the instance of a
class, with the path name along with the attributes. Multiple objects could be
connected with links. The notation for unnamed and named objects, object with path
name, active objects, object with attributes, multiple objects, and self linked object is
shown as:

 Self-linked

 Links Object name: Class

Multiplicity

Multiple Object

Object name: Class

Object with attributes

Object Name: Class

Attribute type = ‘Value’
Attribute type = ‘Value’
Attribute type = ‘Value’
Attribute type = ‘Value’

Active object

Object name: Class

Named object with path name

Object name: Class :: Package

Unnamed object

: Class

Object name: Class

Object name: Class

Figure 10: Different types of objects

A package is a general purpose mechanism for organising elements into groups. It
can also contain other packages. The notation for the package shown contains name

 44

Object Oriented
Modeling and UML

and attributes as shown in Figure11. Packages are used widely in a Java based
development environment. You may refer to the Unit 3 of Block 2 of the MCS-024
course for more details about packages.

Package Name

+Attribute 1
+Attribute 2
-Attribute 3

Package
Name

Figure 11: Package Diagram

A collaboration is a society of classes, interfaces and other elements that work
together to provide some cooperative behavior that is bigger than the sum of its parts.

A relationship is a connection among things. In object models, the common types of
relationships are inheritance, dependency, aggregation, containment, association,
realisation, and generalisation. The notation for relationship between use cases is
shown as:

Actor

Use case

<<uses>>

Use case

<<extends>>

Use case

Use case

Figure 12: Relationship between different use case

Relationships exists in many forms. The notation for different form of relationship is
shown as:

Realization

Directed
Association

Association

Containment

Aggregation

Dependency

Inheritance

Figure 13: Common relationship types

 45

 Using UMLA dependency is a relationship that states, that a change in specification of one thing
may affect another thing, but not necessarily the reverse. In UML, it is shown as a
dashed directed line. The notation for dependency between components and packages
is shown as:

Dependency

 Component

 Component

 Component

Figure 14: Dependency between components

 <<import>>

+Attribute 1
-Attribute 2

Package Name

+Attribute 1
-Attribute 2
+Attribute 1
-Attribute 2

Package Name Package Name

Figure 15: Dependency between packages

A generalization is a relationship between a general thing and a specific kind of
thing. It is also called “is-a-kind-of” relationship. Inheritance may be modeled using
generalization. In UML, it is shown as a solid directed line with a large open arrow
pointing to the parents.

An association is a structural relationship that specifies that the objects of one thing
are connected with the objects of another. In UML, it is shown as a solid line
connecting same or different class. The notation for association between nodes is
shown as:

Node Course

 Hospital

 Hospital

Node Course

 Hospital

 Hospital

Node Course

Figure 16: Association between nodes

 46

Object Oriented
Modeling and UML

The four enhancements that apply to association are name, role, multiplicity, and
aggregation. Each class participating in an association has a specific role which is
specified at the rear end of the association.

Multiplicity specifies how many objects may be connected across an instance of an
association which is written as a range of values (like 1..*). The notation for roles and
multiplicity between classes is shown as:

 role

role

name

Class B

Class B

Class A

Class A

1..*

1

Person

Company 1 no more than one

0..1 zero or one

* many

0.. * zero or many

1.. * one or many

Figure 17: Various roles and multiplicity defined with association

An aggregation is a structural relationship that specifies that one class represents a
large thing which constitute of smaller things. It represents “has-a” relationship. In
UML, it is shown as association with an open diamond at the large end. The notation
for aggregation is shown as:

*1
Message Message Queue

Figure 18: Aggregation

A state encompasses all the properties of the object along with the values of each of
these properties.

An instance is a concrete manifestation of an abstraction to which a set of operations
can be applied and which has a state that stores the effect of the operation.

A transition is a relationship between two states indicating that an object in the first
state will perform certain action and enter the second state when a specific event
occurs and specific conditions are satisfied.

A note is a graphical symbol for rendering constraints or comments attached to an
element or collection of elements.

 Check Your Progress 1

1) Which of the following is not a valid Architectural Definition language?
 a) Rapide b) ACME
 c) UML d) Pascal

……………………………………………………………………………………

….………………………………………………………………………………...

 47

 Using UML2) OMT is

 a) Object Methodology Gateway b) Objective Methodology Gateway
 c) Object Management Gateway d) Object Management Group

……………………………………………………………………………………

…….……………………………………………………………………………..

3) Object Oriented Software Engineering is given by

a) Booch b) Rumbaugh
c) Jacobson d) None of these
……………………………………………………………………………………

…..………………………………………………………………………………..

4) Booch was strong in

 a) Analysis b) Design
 c) Implementation d) Software engineering

……………………………………………………………………………………

5) Which of the following is not a valid UML notations?

 a) Behavioral b) Grouping

 c) Transactional d) Annotational

……………………………………………………………………………………

……………………………………………………………………………………

For object modeling some standard notations are used. Now let us discuss these basic
notations. A well-defined logical notation is important in the software development
process. It helps the software architect to clearly establish the software architecture
and implement module integration. In order to define the commonly used diagrams in
UML, it is essential to understand the basic concepts of the object modeling.

3.4 STRUCTURAL DIAGRAMS

The main purpose of structural diagram is to visualize, specify, construct and
document the static aspects of a system. Their elements comprised of class, interface,
active class, component, node, processes, threads, applications, documents, files,
library, pages etc. The four main structural diagrams are class, object, component and
deployment diagram.

3.4.1 Class Diagram
A class diagram is used to support functional requirement of system. In a static design
view, the class diagram is used to model the vocabulary of the system, simple
collaboration, and logical schema. It contains sets of classes, interfaces,
collaborations, dependency, generalization and association relationship. The notation
for classes and the relationship between classes is shown as:

Class Name 2

Attribute
Attribute: type
Attribute = Value

Stat Operation ()
Operation (p: T)
Operation (q): T

 Rolename 2Rolename 1

Association name

Class Name 1

Attribute
Attribute: type
Attribute = Value

Stat Operation ()
Operation (x: T)
Operation (y): T

Figure 19: Relationship among classes

 48

Object Oriented
Modeling and UML

If in any college, there are limited classrooms that have to be allocated to different
classes and instructors are fixed for all classes, then the class diagram for the
allocation of classrooms and instructors is shown as:

1

*

 1

 *

1

1 1

Room

Location

capacity

Instructor

Name class Reservation

date

1

 1 1
*

1

1

Student

Name
Class
Batch

Check Class
Check Batch()

Reservation Repository

addreservation ()
removeReservation ()
makeweeklyschedule()
makeinstructorSchedule()
makeRoomScheduler()

Interface Controller

CurrentUser

Login ()
add student ()
add instructor ()
addRoom()
remove student ()
removeinstructor ()
removeRoom ()

Figure 20: Class diagram for a class room scheduling system

3.4.2 Object Diagram
An object diagram shows a set of objects and their relationships at a point of time. In a
static view, the object diagram is used to model interactions that consist of objects that
collaborate the without any message passed among them. It contains name, graphical
contents, notes, constraints, packages and subsystems. The notation for objects and the
relationship between objects is shown as:

 Name: Classname1

Attribute = value

 Name: Classname2

Attribute = value

Rolename1 Rolename2

Association Name

Figure 21: Relationship among objects

3.4.3 Component Diagram
A component diagram shows a set of component and their relationships. In a dynamic
model, the component diagram is used to model physical components such as
executable releases, libraries, databases, files or adaptable systems. It contains
components, interfaces, packages, subsystems, dependency, generalization,
association, and relationship. The notation for components and relationship between
components is shown as:

 49

 Using UML

Component

Body

Component

Specification

Figure 22: Relationship among components

The component diagram for ATM is shown as:

Card Packet

Card Packet

ATM.scores

ATM.scores

Cash Disposer

Cash Disposer

ATM.exe

Figure 23: Component diagram for ATM

3.4.4 Deployment Diagram

A deployment diagram shows all the nodes on the network, their interconnections, and
processor execution. In a dynamic model, a deployment diagram is used to represent
computational resources. The notation for nodes and relationship between processors
and devices is shown as:

Processor

DeviceProcessor

Name

Name Name

Figure 24: Relationship among nodes

 50

Object Oriented
Modeling and UML

The deployment diagram for student administration is shown as:

 < display >
application server/
states

DB Server Solar

 Class
Management

Web services

Student
directory

Class
schedule

e.g. container

Student

Persistence
infrastructure

Student
database

Class
database

ODBC

Serial
start

<http>

Client
application

Figure 25: Deployment diagram for Student Administration

Now you are familiar with structured diagram. To represent dynamic aspect of the
structured system, behavioral diagrams are used. In the next section, we will study
various behavioral diagrams.

3.5 BEHAVIORAL DIAGRAMS

The main purpose of behavioral diagrams is to visualize, specify, construct, and
document the dynamic aspects of a system. The interaction between objects indicating
the flow of control among them is shown using these diagrams. The flow of control
may encompass a simple, sequential thread through a system, as well as complex
flows that involves branching, looping, recursion and concurrency. They could model
time ordering (sequence diagram) or sequence of messages (collaboration diagram).
The four main behavioral diagrams are: use case, interaction, activity and statechart
diagram.

3.5.1 Use Case Diagram

A use case diagram shows a set of use cases, actors, and their relationships. These
diagrams should be used to model the context or the requirement of a system. It
contains use cases, actors, dependency, generalization, association, relationship, roles,
constraints, packages, and instances. The use case diagram makes systems,
subsystems, and classes approachable by presenting an outside view of how the
elements may be used in context. The notation for use cases and relationship among
use cases, base cases and extend cases is shown as:

<<include>>

Extend Cases

Base Cases Use Cases

<<extend>>

Figure 26: Relationship among use cases

 51

 Using UML3.5.2 Interaction Diagram

An interaction diagram shows an interaction, consisting of a set of objects and their
relationships, including the messages that may be dispatched among them. These
diagrams should be used to model the dynamic aspect of the system. It includes
sequence diagrams and collaboration diagrams. Here we will discuss two interaction
diagrams, sequence diagrams and collaboration diagrams.

3.5.2.1 Sequence Diagrams

A sequence diagrams are interaction diagrams that emphasize the time ordering of
messages. In UML it is shown as a table that shows objects arranged along the X axis
and messages, ordered in increasing time, along the Y axis. It has a global life line and
the focus of control. An object life line is the vertical dashed line that represents
existence of an object over a period of time. The focus of control is tall and thin
rectangle that shows the period during which an object is performing an action. The
notation for depiction of sequence among objects with certain conditions is shown as:

[Condition] Message (x)
Return y

<<Message (x)

<<Distroy>>

Return (Y)

: Baseclass
: Baseclass

Message (x) BaseClass ()

Role: baseClass

 Figure 27: Sequence diagram

The sequence diagram for sending the document along the network is shown as:

sendDocument ()

[Error]
send Error ()

[CGI] process ()

[HTML]
send Document ()

[Error]
send Error ()

load Files ()

Request ()

Network WriterCGI ScriptFile loader Request Processor Network Listener

Figure 28: Sequence diagram for sending document

 52

Object Oriented
Modeling and UML

3.5.2.2 Collaboration Diagrams

Collaboration diagrams are interaction diagrams that emphasize the structural
organisation of an object that send and receive messages. There is always a path in
collaboration diagrams to indicate how one object is linked to another, and sequence
numbers to indicate the time ordering of a message. The notation for depiction of a
collaboration diagram is shown as:

Role: BaseClass
1: y=message (x)

1.1: BaseClass ()

1.3 <<Distroy>>

1.2: message (x)

 : BaseClass

Figure 29: Collaboration diagram

The collaboration diagram for the execution using J2ME and EJB from the remote

database is shown as:

Serviet (Controller)

6: Response

1: Request

 5: Response

4: Response

EJB (Modal)

2: Request

3: Request

Database
information

J2ME (View)

Figure 30: Collaboration diagram for execution using J2ME, Servlet and EJB

3.5.3 Activity Diagram

Activity diagrams show the flow from one activity to another. An activity is an
ongoing non atomic execution within a state machine. Activity ultimately results in
some action, which is made up of executable atomic computations that result in a
change in state of the system, or the return of a value. It contains activity states, action
states, transition states, and objects. The activity diagram for encryption of a message
send through e-mail is shown as:

 53

 Using UML

Private
control else

Encrypted
 E-mail

Communication
Established

[no reply] (error)

Wait 1 hour
after send
Wait 1 hour
after sending

End Flow End Flow

Proper reply Proper reply

State
do. activity
See Subsidiary
Activity Diagram
UML Activity
Diagram-Email
Encryption

Send
E-ma

Encrypted
 E-mail il

Receive Receive Response

R
Send E-mail Send E-mail

Establish E-mail
Communication
Establish E-mail
Communication

Figure 31: Activity diagram for E-mail encryption

3.5.4 Statechart Diagram
A state chart shows a state machine, emphasizing the flow of control from one state to
another. A state machine is a behaviour that specifies the sequence of states that an
object goes through during the life time in response to events together with its
response to those events. A state is a condition/situation during the object’s life which
performs some activity, or waits for some event. It contains simple states, composite
states, transitions, events, and actions. The notation for multiple states depending on
events/action based on set of activities is shown as:

Event (Good) Action Event (Good) Action

State
do activity

State
do activity

State
do activity

State
do activity

Event (Good) Action

Figure 32: State diagram for multiple activities

 54

Object Oriented
Modeling and UML Check Your Progress 2

1) In a class diagram, a class is denoted by

a) rectangle b) circle
c) ellipse d) oval
……………………………………………………………………………………

……………………………………………………………………………………

2) An actor in use case diagrams is a

a) process b) subprogram
c) users d) comments
……………………………………………………………………………………

……………………………………………………………………………………

3) Which of the following diagram have to be numbered to understand their order?

a) Object b) Collaboration
c) Component d) Deployment
…………………………………………………………………………….

…………………………………………………………………………….

4) Which of the following diagram is used for physical layer?

 a) class b) object
 c) use case d) component

……………………………………………………………………………

……………………………………………………………………………

5) A particular state in a statechart diagram is denoted by

 a) rectangle b) circle
 c) ellipse d) oval

…………………………………………………………………………….

…………………………………………………………………………….

6) A bull’s eye icon is used to represent ______________ in a statechart diagram

 a) initial state b) action
 c) final state d) event

…………………………………………………………………………….

…………………………………………………………………………….

7) Which of the following diagram’s is used for dynamic modeling?

 a) class b) object
 c) use case d) interaction

…………………………………………………………………………….

…………………………………………………………………………….

8) Which view plays a special role integrating the contents of other views?

 a) Use case view b) Process view
 c) Design view d) Implementation view

……………………………………………………………………………

…………………………………………………………………………….

…………………………………………………………………………….

 55

 Using UML

3.6 MODELING WITH OBJECTS

A model is an abstract representation of a specification, design or system from a
particular view. A modeling language is a way of expressing the various models
produces during the development process. It is a collection of model elements. It is
normally diagrammatic. It has

syntax – the rules that determine which diagrams are legal
semantics – the rules that determine what a legal diagram means.

A model is a semantically closed abstraction of a system compose of elements. It
could be visualized using any of the following five views:

Programmers Software
management

System Engineering System
Topology Delivery
Installation Communication

System Integrators
Performance Scalability
Throughput

Analysts/Designers
Structure

 End-users

Deployment View
Process View

Implementation Logical View

 Use-Case View

Figure 33: 4+1 View of Software Architecture

a. Logical view This view is concerned with the functional

requirements of the system. It is used early in the
elaboration phase with the creation of class and
packages, using a class diagram which may reflect
the strategic dimension of the system.

b. Implementation view This view focuses on the actual software module
organisation within the developmental environment.
It includes taking the derived requirement, software
management, reuse, and constraints imposed by the
program tools. The physical partitioning is done in
this phase.

c. Process view This involves the runtime implementation structure
of the system. It contains requirements such as
performance, reliability, scalability, integrity,
synchronization, etc. Executable components are
used here to show runtime components to map
classes such as java applet, activeX component or
DLL.

d. Deployment view This view demonstrates mapping software to process
nodes showing the configuration of runtime
processing elements. It takes into account,
requirements such as availability, reliability,
performance and scalability. Major issues here are
processor, architecture, speed, along with inter
process communication, bandwidth and distributed
facilities.

 56

Object Oriented
Modeling and UML

e. Use case view This view addresses and validates the logical,
 process, component, and deployment view.

For an iterative and incremental life cycle, the two criteria are time and process. The
major components of showing a project development along with time scale, inception,
elaboration, construction and transition. When the project is structured along with the
process scale, then the major steps are business modeling, requirements, analysis and
design, implementation, testing and deployment. The mapping between time and
process scale can be shown diagrammatically for more clarity.

Using UML, it is possible to generate code in any programming language from UML
model (called forward engineering) and reconstruct a model from an implementation
into UML (called reverse engineering) as show in the Figure 34 given below.

UML Model Object Structure

Programming
Language

Source Code Executing
Program

Specifies

Abstract view of
Abstract view of

Compile time Run Time

Figure 34: The relationship between models and code

 Check Your Progress 3

1) Create a use case diagram for a cell phonebook.

……………………………………………………………………………………

…..……………………………………………………………………………….

2) Create a sequence diagram for a logon scenario.

……………………………………………………………………………………

…..……………………………………………………………………………….

3.7 SUMMARY

This Unit provides an introduction to the basic concept of object modeling notations.
The major diagrams used with UML have been discussed. An idea has been provided
about different views and the corresponding diagrams. This Unit only contains the
introduction of various diagrams, and the student is not expected to be an expert in
designing every diagram.

3.8 SOLUTIONS /ANSWERS

Check Your Progress 1

1. d) 2. d) 3. c) 4. b)

Check Your Progress 2

1. a) 2. c) 3. b) 4. d)

5. d) 6 .c) 7.d) 8. a)

 57

 Using UMLCheck Your Progress 3
1)

Entry Manipulate
Search Phone
Book

Add New
Entry

Add New
Entry

Edit Entry Contact
Person

Delete Entry

Delete Entry

Edit Phone
Book Option

Please Call Send
Message

0.1

Cell Phone
User

1

0.1

0.1
0.1

0.1

0.1

0.1

0.1

Figure 35: Use case diagram for a cell phonebook
2)

Display login

Display user Interface

Display Administrator

user

[(user Type) users]

[(user Type)
admin]

user Type = is User Or
Admin (name Pass)

[else]

true

[Is Valid =
true]

User Type

Report error message

Logon (name pass)

Name Password

alt

alt

Is valid-in
Database (name)

GUGUIIGUGUIIGUIGUI

Start Program

Figure 36: Sequence Diagram for logon scenario

System Design

UNIT 1 SYSTEM DESIGN

Structure Page Nos.

1.0 Introduction 5
1.1 Objectives 5
1.2 System Design: An Object Oriented Approach 6
1.3 Breaking into Subsystems 9
1.4 Concurrency Identification 11
1.5 Management of a Data Store 13
1.6 Controlling Events Between Objects 16
1.7 Handling Boundary Conditions 16
1.8 Summary 18
1.9 Solutions/Answers 18

1.0 INTRODUCTION

Object oriented design (OOD) is concerned with developing an object oriented model
of a software system to implement the identified requirements. Many OOD methods
have been described since the late 1980s. The most popular OOD methods include
Booch, Buhr, Wasserman, and the HOOD method developed by the European Space
Agency which can yield the following benefits: maintainability through simplified
mapping to the problem domain, which provides for less analysis effort, less
complexity in system design, and easier verification by the user. OOD also provides
reusability, which saves time and costs, and productivity gains through direct
mapping to features of Object-Oriented Programming Languages. Object Oriented
Development (OOD) has been touted as the next great advance in software
engineering. It promises to reduce development time, reduce the time and resources
required to maintain existing applications, increase code reuse, and to provides a
competitive advantage to organizations that use it. While the potential benefits and
advantages of OOD are real, excessive hype has lead to unrealistic expectations
among executives and managers. Even software developers often miss the subtle, but
profound, differences between OOD and classic software development.

In this Unit we will discuss the basics of object oriented design. We will learn how
systems are broken into subsystems, concurrency identification, and how data storage
is managed.

1.1 OBJECTIVES

After going through this unit, you should be able to:
• give an overview of object oriented design;
• breaking down system to subsystems;
• explain how a software design may be represented as a set of interacting

objects that manage their states and operation;
• identify concurrent object, and explain how to handle concurrency;
• explain methods of storing data and comparison with conventional system

design;
• control events between objects; and
• explain boundary condition.

1.2 SYSTEM DESIGN: AN OBJECT ORIENTED
APPROACH

5

Object Oriented Design

Any software systems always tends to change and evolve as technology and business
rules change. The evolution of information systems is unavoidable, and it is a natural
phenomenon. Organisations need to support systems evolution to take advantage of
the new technology and to address the changing business rules. The evolutionary
nature of software products requires us to maintain products with their continually
changing nature. Not all software products developed are amenable to these fast
changes. In this ever-increasing competitive business environment, there is hardly
any option but to adopt technology that is adaptable to changes.

Software systems designed with structured design methodology do not support
some of the desired quality attributes such as reusability, portability and mapping to
the problem domain. Many large organisations find that systems designed with
structured approaches are less reusable and less maintainable than those designed
with object-oriented approaches.

OOD techniques are useful for development of large, complex systems. It has been
observed that large projects developed using OOD techniques resulted in a 30%
reduction in development times and a 20% reduction in development staff effort,
as compared to similarly sized projects using traditional software development
techniques.

Although object oriented methods have roots that are strongly anchored back in the
60s, structured and functional methods were the first to be used. This is not very
uncommon, since functional methods are inspired directly by computer
architecture (a proven domain, well known to computer scientists). The separation
of data and program as exists physically in the hardware was translated into
functional methods. This is the reason why computer scientists got into the habit of
thinking in terms of system functions. Later it was felt that hardware should act as
the servant of the software that is executed on it rather than imposing architectural
constraints on system development process.

Moving from a functional approach to an object oriented one requires a translation of
the functional model elements into object model elements, which is far from being
straightforward or natural. Indeed, there is no direct relationship between the two
sets, and it is, therefore, necessary to break the model elements from one approach in
order to create model element fragments that can be used by the other. In the initial
phases of OO design a mixed approach was followed computer scientist tend to use
functional approach in analysis phase and OO approach in design phase. The
combination of a functional approach for analysis and an object-oriented approach for
design and implementation does not need to exist today, as modern object-oriented
methods cover the full software lifecycle.

Traditional System Analysis and Design: Traditional System Analysis and Design
(SAD) has three fundamental life cycle models. A typical software lifecycle consists
of following phases:
• Planning
• Development
• Maintenance

Key Criteria

• a well-defined methodology
• traceability among steps
• documentation
• control

Software Life Cycle

The software design consists of a number of stages, or phases

1. Requirement Phase– determine use need
2. Specification Phase– define requirement

6

System Design

T nal entity in DFD
o

 of use of the system

3. Design Phase: design the system
4. Implementation Phase– fabricate the system
5. Testing and Integration Phase– testing the fabricated system
6. Maintenance phase
7. Retirement.

Shortcomings in the Structured approach

• Scalability: The product designed was not scalable
• Maintenance cost: high maintenance cost
• Data and program are separate and difficult to map a real life situation
• Structured methodology treat data and their behaviors (function) separately,

this makes it more difficult to isolate changes. If certain changes requires then
changes in both data structure and algorithms and to be done.

The Proliferation of Object-Oriented Methods

The first few years of the 1990s saw the blossoming of around fifty different object
oriented methods. This proliferation is a sign of the great vitality of object oriented
technology, but it is also the fruit of a multitude of interpretations of exactly what an
object is. The drawback of this abundance of methodologies is that it encourages
confusion, leading users to adopt a ‘wait and see’ attitude that limits the progress
made by the methods. The best way of testing something is still to deploy it; methods
are not cast in stone – they evolve in response to comments from their users.
Fortunately, a close look at the dominant methods allows the extraction of a
consensus around common ideas. The main characteristics of objects, shared by
numerous methods, are articulated around the concepts of class, association
(described by James Rumbaugh), partition into subsystems (Grady Booch), and
around the expression of requirements based on studying the interaction between
users and systems (Ivar Jacobson’s use cases).

Finally, well-deployed methods, such as Booch and OMT (Object Modeling
Technique), were reinforced by experience, and adopted the methodology elements
that were most appreciated by the users.

From SAD to OOAD (Structured Analysis and Design (SAD) to Object Oriented
Analysis and Design (OOAD).

We will see here how we can map different models in SAD to different models in
OOAD. We will a consider various levels of abstraction through which this is done.
The data flow diagram (DFD) in SAD is mapped to Use Case diagram in OOAD.
DFD represents a broader model of a system from the process point of view. Hence,
DFD cannot be transformed as it is to equivalent representation in UML.

Process

Data store

Actor

Use Case

Class

Use Case
Diagram

External
entity

Figure 1: Transformation from SAD to OOAD

he processes are transformed those into Use Case, and the exter
has similar characteristics to of an actor in OOAD. The data store is transformed int
class and part of the data store to attributes of class.

An object-oriented design process

1. Define the context and modes

7

Object Oriented Design

2. Designs the system architecture

3. Identifies the principal system objects

4. Identifies concurrency in the problem

5. Handling boundary conditions

6. Develops design models

7. Specifies object interfaces

Object oriented design is concerned with developing OO model of software systems
to implement the identified requirement during the analysis phase.

Analysis System
Design

Object
Design Implementation Requirements

Use Case
Model

Problem
Domain
Objects

Sub
System

Testing

Figure 2: Software life cycle activity

Software developers, data base administrators (DBAs), need to be familiar with the
basic concepts of object-orientation. The object-oriented (OO) paradigm is a
development strategy based on the concept that systems should be built from a
collection of reusable components called objects. Instead of separating data and
functionality as is done in the structured paradigm, objects encompass both. While
the object oriented paradigm sounds similar to the structured paradigm, as you will
see in this course material it is actually quite different. A common mistake that many
experienced developers make is to applying similar software-engineering principles
to OO design. To succeed one must recognize that the OO approach is different than
the structured approach.

 Check Your Progress 1

1) Why were functional methods popular in early days?

…………………………………………………………………………………

…….……………………………………………………………………………

…..………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………

2) What are the shortcomings in structured approach?

…………………………………………………………………………………

…….……………………………………………………………………………

…...

…………………………………………………………………………………

…….……………………………………………………………………………

…...

…………………………………………………………………………………

…

3) Describe different steps of an object-oriented design process.

Test cases Solution
Domain
Object

Source
Code
in OO
Language

8

System Design

…………………………………………………………………………………

…..….……………………………………………………………………………

….………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………

Breaking the system into subsystem involves breaking the problem in to logically
independent and interacting subsystems. Now we will discuss how a system is broken
into subsystems.

1.3 BREAKING INTO SUBSYSTEMS

Decomposition is an important technique for coping with complexity based on the
idea of divide and conquer. In dividing a problem into a subproblem the problem
becomes less complex and easier to overlook and to deal with. Repeatedly dividing a
problem will eventually lead to subproblems that are small enough so that they can be
conquered. After all the subproblems have been conquered and solutions to them
have been found, the solutions need to be composed in order to obtain the solution of
the whole problem. The history of computing has seen two forms of decomposition,
process-oriented and object-oriented decomposition.

Process-oriented decompositions divide a complex process, function or task into
simpler sub processes until they are simple enough to be dealt with. The solutions of
these subfunctions, then, need to be executed in certain sequential or parallel orders,
in order to obtain a solution to the complex process.

Object-oriented decomposition aims at identifying individual autonomous objects
that encapsulate both a state and a certain behavior. Each major components of the
system is called a subsystem. Then communication among these objects leads to the
desired solutions. Decomposition of system in function-data model (SAD) and object
oriented decomposition is given below. Although both solutions help deal with
complexity, we have reasons to believe that an object-oriented decomposition is
favourable because, the object-oriented approach provides for a semantically richer
framework that leads to decompositions that are more closely related to entities
from the real world. Moreover, the identification of abstractions supports heaving
(more abstract) solutions to be reused, and the object-oriented approach supports the
evolution of systems better, as those concepts that are more likely to change can be
hidden within the objects.

Transaction

Open
Withdraw

SB A/c

Deposit

Current
A/c

Withdraw
SB

Withdraw
Current

Deposit
SB

Deposit
Current

Figure 3: A Function data decomposition (SAD)

9

Object Oriented Design

 Open

Deposit
Withdraw

Figure 4: OO Decomposition (OOD)

Object-oriented decompositions of systems tend to be better able to cope with
change. Each subsystem has a well-defined interface that communicate with rest of
the system. Each of these interfaces defines all form of interaction that are required
for proper functioning of the whole system, but the internal implementations are left
to the sub-system itself. This is because they manage to encapsulate those items that
are likely to change (such as functionality, sequence of behaviour and attributes)
within an object and hide them from the outside world. The advantage is that the
outside cannot see them, and therefore cannot be dependent on them and does not
need to be changed if these items change. Also, object-oriented decompositions are
closer to the problem domain, as they directly represent the real-world entities in their
structure and behavior. The abstraction primitives built into reuse have a huge
potential of
reuse as commonalities between similar objects can be factored out, and then, the
solutions can be reused. Finally, object-orientation has the advantage of continuity
throughout analysis, design implementation, and persistent representation.

• Object-oriented analysis, design and programming are related but distinct.

• OOA is concerned with developing an object model of the application

domain.

• OOD is concerned with developing an object-oriented system model to
implement requirements.

• OOP is concerned with realizing an OOD using an OO programming
language such as Java or C++.

• Objects are abstractions of real-world/system entities.

• Objects manage themselves.

• Objects are independent and encapsulate state and representation.

• System functionality is expressed in terms of object services.

• Shared data areas are eliminated.

• Objects communicate by message passing.

• Objects may be distributed and may execute sequentially, or in parallel.

The system can be decomposed into two-layer architecture (referred as layer) vertical
and decomposition (referred as partition).

Account

Other
object(s)

SB A/c Current A/c

10

System Design

Data display sub-
system

Now, let us see the basic advantages of decomposition.

The Advantages of Decomposition

1. Separate people can work on each subsystem.
2. An individual software engineer can specialize in a domain.
3. Each individual component is smaller, and therefore easier to understand and

manage.
4. Part of the subsystem can be replaced or changed without having to replace or

extensively change other subsystems.

Concurrency identification is very challenging in nature. In the next section, we will
discuss objects concurrency identification.

1.4 CONCURRENCY IDENTIFICATION

While designing the analysis, model we map the real world model into our analytical
model. Real life objects are concurrent in nature, but all design model objects are
not concurrent in nature as a single process may support multiple objects.

Let us see what concurrency actually is: Concurrency in objects can be identified
by the way they change state. Current objects can change state independently.
Aggregation implies concurrency. Concurrency in OOAD study is described and
studied in dynamic modeling.

One of the important issues in system design is to find the concurrency in objects.
Once we identify non-concurrent (mutually exclusive) objects, we can fold all the
objects together in one thread of control, or process. On the other hand, if the
objects are concurrent in nature we have to assign them to, different thread of
control. For example, withdraw and deposit operations related to a bank account may
be executed in parallel (concurrently).

• A thread of control is a path through a set of state diagrams on which a single
object is active at a time.

• Objects are shared among threads, that is, several methods of the same object
can be active at the same time.

• Thread splitting: Object sends a message but does not wait for the completion
of the method.

Identification of concurrency: Concurrency is identified in a dynamic model. Two
objects are said to be concurrent (parallel) if they can receive events at the same
time. Concurrent objects are required to be assigned to different threads of control.
We will see how if is used in this example:

Data processing sub-
system

Data collection
subsystem

Data display layer where the
objects of the sub-system are
concerned only with
presentation of the user
interface

Data processing layer where
objects check the integrity of
data that goes to the
database.

The other types of decomposition
called partition are commonly
found in operating system. Most of
the large system may require a
mixture of both types of
decomposition.

11

Object Oriented Design

Example:

:withdraw

:bankAC (initial balance 300)

:withdraw

Withdraw (100)
get_balance()

300

calculateNewBalance(300,100)

setNewBalance(200)

Figure 6: Concurrency without synchronization

Figure 7: Concurrency with synchronization

Refer to the Figure 7 if an object must perform two or more activities concurrently,
then the internal steps of the process must be synchronized. Both the synchronized
activity must complete before the object performing the concurrent activity can go to
the next step.

Concurrency issues

• Data integrity: Threads accessing the same object need to be synchronized, for
example: banking account.

• Deadlock: One or more threads in the system are permanently blocked
Example: Thread A waiting on Thread B, which is waiting on Thread A.

• Starvation: A thread is not getting enough resources to accomplish its work

 Example: All requests from one user are being handled before another users
 requests.

How to handle concurrency:

Mechanisms

c2:customer

withdraw(100)

get balance()

calculateNewBalance(300,100)

setNewBalance(200)

 closing balance 200 ?

300

c1:customer

:withdraw
withdraw(100)

c2:customer

get balance()

300

calculateNewBalance (300, 100)

setNewBalance(200)

c1: customer
 closing balance 100

withdraw(100)

get balance()

12

System Design

• Locks
• Semaphores
• Monitors
• Synchronized methods
Methods
• Deadlock avoidance
• Verification
• Simulation
Key:

1) Develop a clear strategy for dealing with all concurrency issues during system
design.

2) Concurrency must be dealt with during the design process as dealing with
concurrency after the system is implemented is difficult.

A detailed discussion on this topic will be there in MCS 041.

 Check Your Progress 2

1) What are the advantages of decomposing a system?
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

2) Differentiate between object oriented decomposition and structured
decomposition?
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

3) How is concurrency identified?
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

……………

Data storage is a very important stored aspect involve in any systems. In the next
section we will discuss management of data.

1.5 MANAGEMENT OF DATA STORE

Every system irrespective of their nature of application needs to store permanent data
for subsequent use in problem solving. Some objects in the models need to be
persistent, to store the state of the object permanently in database. Most systems
need persistent data which is not lost when the system closes down. These data are
stored in file system, in a or database. Object-oriented applications often use
relational databases to provide persistence.

Designer needs to:

1. Identify what data needs to be persistent

2. Design a suitable database schema for the database.

13

Object Oriented Design

Persistent classes are shown using tagged value in UML diagram.

Reservation
{persistent}

Booking
{persistent}

 Customer

{persistent}
1

Figure 8: A UML diagram showing persistent class

For example, in reference to Figure 8, we must save all information related to
customers and booking details.

In most of the cases, persistent class maps to one relational table (leaving aside the
inheritance issue, for the moment). In the simplest model, a class from the logical
model maps to a relational table, either in whole, or in part. The logical extension of
this is that a single object (or instance of a class) maps to a single table row.
Persistent object can be stored with one of the following:

Files

• Cheap, simple, permanent storage
• Low level (Read, Write)
• Applications must add code to provide a suitable level of abstraction.
Relational database
• Standardized, easy to port
• Supports multiple writers and readers
• Mature technology
Object database

• One-to-one mapping from the analysis model
• Associations are directly represented
• Slower than relational databases for complex queries

 Data store Data store

Process

d1 d1

Process

Accessing of value in data store Updating of value in data store

Figure 9: Functional Model notation of data store

The advantage of using a Database Management System for a data store is that
databases have mechanisms for describing data, managing persistent storage and
for providing a backup and recovery mechanism. It also provides concurrent
access to the stored data with an appropriate locking mechanism. Most of the DBMS
contains information about data in the form of a data dictionary. Most commercial
RDBMS come with an “Object-Relational” extension which implements an object
database on top of a RDBMS.

Issues when Selecting a Database
• Storage space requirement: A database requires about triple the storage space

of actual data.
• Response time: The response time of the database for I/O or communication

bound (in case of distributed databases) request.
• Locking modes pessimistic locking: Lock before accessing an object and

release when object access is complete.

14

System Design

• Optimistic locking: Read and writes may freely occur (high degree of
concurrency).

• Administration: Modern DBMS requires specially trained support staff to set
up security policies, manage the disk space, prepare backups, fine-tune the
performance, and monitor performance.

• How often is the database accessed?
• What is the expected request (query) rate? In the worst case?
• What is the size of the typical request and of the worst case requests?
• Need for data to be archived.

Table 1

Relational Databases Object-Oriented Databases

• Based on mathematical principles
called relational algebra

• Data are represented by a two
dimensional table with columns and
rows

• Implements standard query language
called SQL

• Most RDBMS supports various
constraints, like referential integrity.

• Supports all fundamental object
modeling concepts: Classes,
Attributes, Methods, Associations,
Inheritance

• Support for complex objects

• Provides for mapping an object
model to an OO-database

• Determine which objects are
persistent

• Perform normal requirement
analysis and object design

• Create single attribute indices to
reduce performance bottlenecks.

Most of the object oriented system use relational database to store persistent data.
The advantages and disadvantages of OO database are compared in Table 2.

Table 2

Advantages of OO Database Disadvantages OO Database
• Supports all fundamental object

modeling concepts like Classes,
Attributes, Methods, Associations,
Inheritance

• Maps an object model to an OO-
databases

• Determine which objects are
persistents

• Performs normal requirement analysis
and object design

• Creates single attribute indices to
reduce performance bottlenecks

• Supports complex objects.
• Extensibility of data types.
• Improves performance with efficient

caching.
• Versioning
• Faster development and easy

maintenance through inheritance and
reusability.

• Strong opposition from the
established players of relational
database

• Lacks rigorous theoretical
foundation.

• Retrogressive to the old pointer
systems

• Lacks standard ad hoc query
language like SQL.

• Lack of standards affects OO
database design

• Lack of business data design and
management tools

• Steep learning curve.

Other System Design Issue

15

Object Oriented Design

• How to realise the subsystems: through hardware or software?

• How is the object model mapped on the chosen hardware software?

• Mapping objects onto hardware: processor, memory, I/O.

• Mapping associations onto networks: Connectivity.

Much of the difficulty of designing a system comes from fulfilling the restriction
imposed by hardware and software constraints. This may include cases where certain
throughput has to be guaranteed for a system, and where certain response time has to
be guaranteed.

1.6 CONTROLLING EVENTS BETWEEN
OBJECTS

Event is the specification of a significant occurrence that has a location in time and
space.

Examples of events are mouse click and flight leaving from an airport. An event does
not have a fixed duration. Each thing that happens modeled as an event. After an
event, objects change their state, and these are represented by a state diagram.

Events are classified as four types in UML

1. Signals

2. Calls

3. Passing of Time

4. Change in State

Events also include inputs, decisions, interrupts and actions performed by users or
any external device. Every event has a sender and receiver. In most of the cases the
sender and receives are the same object. A state without a predecessor and successor
are ambiguous, and care should be taken to represent initiations and termination of
events. Events that have same effect on the control flow must be grouped together
even if their value differs. The events are to be allocated to the object classes that
send/receive it.

Most of the design issues of systems are concerned with steady-state behavior.
However, the system design phase must also address the initiation and finalization of
the system. This is addressed by a set of new uses cases called administration use
cases. Now, let us discuss how these issues are handled.

1.7 HANDLING BOUNDARY CONDITION

These are some conditions which to be handled in any system initialization and
termination

• Describes how the system is brought from a non-initialized state to steady-state
(“startup use cases”). It describes normal operations like start-up, shutdown,
reconfiguration, restart/reset, backup, etc.

• Describes what resources are cleaned up, and which systems are notified upon
termination (“termination use cases”).

Configuration

• Describes how the system is adapted to a local installation.

Failure

• Unplanned termination of the system.

16

System Design

• Many possible causes: failure of system hardware, bugs, operator errors,
external problems (power supply).

• Good system design foresees fatal failures (“failure use cases”).

Figure 10: Boundary Use Case

ManageServer

ConfigureServer

StartUpServer

ShutDownServer

ReconfigureServer

FineTune

System Administrator

Operation Actor Constraints
Start up System Administrator /

Operator
Availability of power, and
no system fault

Shut down System Administrator /
Operator

No user is active, and data
has been saved

Fine Tune System Administrator No user is active, database
offline

Reconfigure System Administrator No user is active, system
resources are available

While defining the boundaries of a system we must ascertain what system entities one
does and does not have control over. The level of control is determined for all
identified internal and external entities. The control status can be total, partial, or
none.

 Check Your Progress 3

1) What is persistency?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

2) Why, generally, does an object-oriented system use a relational DBMS?
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

3) Identify and name a few boundary processes.
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

17

Object Oriented Design

4) Draw a use case diagram for a typical Flight Reservation System. Identify use
case and actor.
…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

……….

1.8 SUMMARY

OOD techniques are useful for the development of large, complex systems. Moving
from a functional approach to an object-oriented one requires a translation of the
functional model elements into object model elements, which is far from being
straightforward. The high-level system design approach involves breaking down the
system into simple and relatively independent sub systems for better manageability.
Systems can be proportioned to horizontal or vertical partitions. Concurrency is
inherent to objects, and concurrent objects cannot be folded into a single thread of
control. Concurrency must be dealt with during the design process as dealing with
concurrency after the system is implemented is difficult.

Most systems need persistent data which is not lost when the system closes down.
Data can be stored in flat files or DBMS. Object-oriented databases provide support
for all fundamental object modeling concepts like Classes, Attributes, Methods,
Associations, and Inheritance. But unlike RDBMS, object-oriented databases lack
theoretical foundation and standards. Although system design is concerned with the
steady state behaviors of the system, the system must be designed to handle boundary
conditions. Boundary use cases are useful to analyse boundary conditions.

1.9 SOLUTIONS/ ANSWERS

Check Your Progress 1

1) Functional methods are inspired directly by computer architecture, and thus the
popular among computer scientist in the early days. The separation of data and
program as it exists physically in the hardware was translated into the
functional methods.

2) Structured methodology treats data and their behaviors (functions) separately,
and this makes it more difficult to isolate changes. If changes are required in
the software then one has to change both the data structure and the algorithms
and these changes subsequently require changes in the algorithms where this
data structure is used as well.

3) The broad steps of an object-oriented design process are:

a. Define the context and modes of use of the system

b. Design the system architecture

c. Identify the principal system objects

d. Identification of concurrency in the problem

e. Handling boundary condition

f. Develop design models

g. Specify object interfaces.

Check Your Progress 2
1) The advantages of decomposing a system into subsystems are that after

decomposition, each individual components become smaller, and easy to
manage. Changes in these subsystem can be effected without extensively

18

System Design

making changes in other subsystem. Decomposition it also allows software
engineer to specialize in a particular domain of the system.

2) Process-oriented (structural) decomposition divides a complex process,
function or task into simpler subprocesses until they are simple enough to be
dealt with. The solutions of these subfunctions then need to be integrated and
executed in certain sequential or parallel orders in order to obtain a solution to
the large complex system. On the other hand object-oriented decomposition
aims at identifying individual autonomous objects that encapsulate both a state
and certain behavior. Each major component of the system is called subsystem.
Then, communication among these objects leads to the desired solutions.
Object-oriented decompositions of systems tend to be better able to cope with
change. Each subsystem has well-defined interfaces that communicate with rest
of the system

3) Concurrency in objects can be identified by the way they change state. Current
objects can change state independently. Aggregation implies concurrency in the
system.

Check Your Progress 3

1) Persistency ensures that data is stored, and that after the object is no longer
available (program stops running), the data will be, available to other users, as
and when needed.

2) The reasons for using RDBMS for OO systems could be any combination of
the following:

a. Many organizations have existing relational databases containing existing
business data.

b. Most commercial RDBMS come with an “Object-Relational” extension
which implements an object database on top of a RDBMS.

c. Purely object databases are too complicated to use, and lack standards
like SQL.

3) System startup, shutdown, system failure.

4) Actors: Passenger, Ticket clerk.

Book
ticket

Check
Schedule

Confirm
Ticket

Passenger Ticket Clerk

Figure 11: Use case for Book Ticket, check schedule and confirm Ticket

19

 20

Object Oriented Design
UNIT 2 OBJECT DESIGN

Structure Page Nos.

2.0 Introduction 20
2.1 Objectives 20
2.2 Object Design for Processing 20
2.3 Object Design Steps 21
2.4 Choosing Algorithms 23 2.4.1 Selecting Data Structure

2.4.2 Defining Internal Classes and Operations
2.4.3 Assigning Responsibility for Operation

2.5 Design Optimization 24
2.6 Implementation of Control 26

2.6.1 State as Location within a Program
2.6.2 State Machine Engine
2.6.3 Control as Concurrent Tasks

2.7 Adjustment of Inheritance 27
2.7.1 Rearranging Classes and Operations
2.7.2 Abstracting Out Common Behavior

2.8 Design of Associations 28
2.8.1 Analyzing Association Traversal
2.8.2 One-way Associations
2.8.3 Two-way Associations

2.9 Summary 29
2.10 Solutions/Answers 29

2.0 INTRODUCTION

Strategies that are selected in system design are carried out in object-oriented design.
In this process, objects that are identified during the analysis are implemented in a
way that it minimizes memory, execution time and other associated costs. All this is
done by the selection of appropriate algorithms, optimizations, and by enforcing
proper. Controls.

In this unit, we will cover the concepts of object design for process, proper algorithm
selections, design optimization and control implementation, with proper adjustment of
inheritance.

2.1 OBJECTIVES

After going through this unit, you should be able to:

• explain the steps of object design;
• discuss algorithms that minimize costs;
• select appropriate data structure to the algorithm;
• define new internal classes and operations;
• assign responsibility for operation to the appropriate classes; and
• explain different types of associations.

2.2 OBJECT DESIGN FOR PROCESSING

The object design phase comes after the analysis and system design. The object design
phase adds implementation details such as restructuring classes for efficiency, internal
data structures and algorithms to implement operations, implementation of control,

 21

Object Design implementation of associations and packaging into physical modules. Object design
extends the analysis.
As you know, there are three models that define the operations on classes:

1) Object model: This describes the classes of objects in the system, including
their attributes, and the operations that they support. The analysis object model
information definitely exists in some form in design. For this, sometimes new
redundant classes are added which increase efficiency.

2) Functional model: This defines the operation that the system must implement.
For each operation, from the analysis model must be assigned an algorithms that
implements clearly and efficiently, according to the optimization goals selected
during system design. In this model, we map the logical structure of the analysis
model into a physical organization of a program.

3) Dynamic model: The dynamic model describes how the system responds to
external events. The implementation of control of flow in a program must be
realized either explicitly or implicitly. Explicit means by the internal scheduler
that recognizes events and map them into operation calls. Implicit means by
choosing algorithms that perform the operations in a specified order.

Now let us see how object design is done for systems.

2.3 OBJECT DESIGN STEPS
Object design is a very iterative process in which several classes (maybe newly
created), relationships between objects, are added when you move from one level to
another level of the design.

There are certain steps to be followed in this design:

1) Classify the operations on classes

This step basically means all the three models, functional, object and dynamic
(studied in last section) must be combined so as to know what operations are to be
performed on objects.

We can make a state diagram describing the life history of an object. A transition is a
change of state of object and it maps into an operation on the object. It helps in
visualizing state changes. We can associate an operation with each event received by
an object. Also, sometimes an event may represent an operation on another objects
i.e., where one event triggers another event. Thus, in this case, the event pair must be
mapped into an operation performing action and returning control, provided that the
events are on a single thread of control passing from object to object.
Any action initiated by transition in a state diagram can be expanded into an entire
data flow diagram in the functional model. The processes in a data flow diagram
consist of sub-operations which may be operational on the original target object, or on
other objects. We can determine the target object of a sub-operation as follows:

i) If the process extracts a value from I/P flow=> input, flow is target.
ii) If the process has the same type of input and output flow and O/P value is

 the updated version of I/P => I/O, flow is target.
iii) If the process has an I/P from or an O/P to a data source => data, source

is a target of the process.
iv) If the process constructs O/P value from a number of inputs => operation

is class operation on the output class.

2) Design an algorithm to implement operations

Each and every operation specified in a functional model should be formulated as an
algorithm. The algorithm indicates how the operation is done rather than what it does,
as in analysis specification.

 22

Object Oriented Design

ii)

iii)

i)

ii)

i)
ii)

The algorithm designer must:

i) Select the proper algorithm so as to minimize implementation cost
ii) Find the most appropriate data structure for the selected algorithm
iii) Define new internal classes and operations, if required
iv) Assign responsibility for operations to appropriate classes.

In the next section, we will discuss algorithm selection in more detail.

3) Optimization of data access paths
Optimization is a very important aspect of any design. The designer should do the
followings for optimization:

i) Add redundant associations, or omit non-usable existing associations to
minimize access cost and maximize convenience

Rearrange the order of computational tasks for better efficiency

Save derived attributes to avoid re-computation of complicated expressions.

4) Implementing software control
To implement software control the designer must redesign the strategy of the state
event model that is present in the dynamic model.

Generally, there are three basic approaches to implement the dynamic model. These
approaches are:

Storing state of program as location within a program, i.e., as a procedure
driven system

Direct implementation of a state machine mechanism i.e., event driver

iii) Using concurrent tasks.

5) Adjustment of inheritance

The inheritance can be increased as the object design progresses by changing the class
structure. The designer should:

i) Adjust, or rearrange the classes and operations

ii) Abstract common behavior out of groups of classes

iii) Use delegation to share behavior when inheritance is semantically incorrect.
6) Design of associations
During the object design phase we must make a strategy to implement the
associations. Association can be unidirectional or bi-directional. Whichever
implementation strategy we choose, we should hide the implementation, using access
operations to traverse and update the associations. This will allow us to change our
decision with minimal effort. The designer should:

Analyze the path of associations.
Implement every association either as a distinct object, or as a link to another
object.

7) Determine object representation

As a designer, you must choose properly when to use primitive types in representing
objects, and when to combine groups of related objects, i.e., what is the exact
representation of object attributes.

8) Package classes and associations into models
Programs are made of discrete physical units that can be edited, complied, imported or
otherwise manipulated. The careful partitioning of an implementation into package is
important for group work on a program. Packaging involves the following issues:

 23

Object Design a. Information hiding

b. Collection of entities

c. Constructing physical modules with strong coupling within each module.

 Check Your Progress 1

1) Describe briefly the models that define the operations on classes.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What is object design?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) In object oriented design, what steps must the designer take to adjust
inheritance?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

Algorithm selection is a very important part of design. It reflects the happening in the
system. In the next section we will discuss algorithm selection.

2.4 CHOOSING ALGORITHMS
In general, most of the operations are simple and have a satisfactory algorithm
because the description of what is to be done also indicates how it is to be done. Most
of the operations in the object link network simply traverse to retrieve or change
attributes or links. Non-trivial algorithms are generally required for two reasons:
i)
ii)

If no procedural specification is given for functions
If a simple, but inefficient algorithm serves as a definition of function.

There are a number of metrics for selecting best algorithm:

i) Computational complexity: This refers to efficiency. The processor time
increases as a function of the size of the data structure. But small factors of
inefficiency are insignificant if they improve the clarity.

ii) Ease of use: A simple algorithm, which is easy to implement and understand,
can be used for not very important operations.

iii) Flexibility: The fully optimized algorithm is generally less readable and very
difficult to implement. The solution for this is to provide two implementations
of crucial operations:

• A complicated but very efficient algorithm
• A simple but inefficient algorithm.

Now, let us see the basic activities that are involved in algorithm selection and
expression.
2.4.1 Selecting Data Structure
Algorithms work on data structure. Thus, selection of the best algorithm means
selecting the best data structure. The data structures never add any information to the

 24

Object Oriented Design analysis model, but they organize it in a form that is convenient for the algorithms that
uses it. Many such data structure include arrays, lists, stacks, queues, trees, etc.
Some variations on these data structures are priority queues, binary trees, etc. Most
object oriented languages provide various sets of generic data structures as part of
their predefined class libraries.
2.4.2 Defining Internal Classes and Operations
When we expand algorithms, new classes can be added to store intermediate results. A
complex operation can be looked at as a collection of several lower level operations
i.e., a high level operation is broken into several low level operations. These lower
level operations should be defined during the design phase.
2.4.3 Assigning Responsibility for Operation
Many operations may have obvious target objects, but some of these operations can
be used at several places in an algorithm, by one of several objects. These operations
are complex high level operations which may be overlooked in laying out object
classes as they are not an inherent part of any one class.

Now, the obvious question is, how do you decide what class owns an operation? It is
easy when only one object is involved in the operation: You are simply informing an
object to perform the operation. But when more than one object is involved in an
operation it becomes quite difficult. Thus, we must know which object plays the main
role in the operation. For this, ask yourself the following questions:

• Is an object acted on when another object performs action? In general, we
should associate the operation with the target of the operation, instead of the one
initiating it.

• Whether an object is modified by the operation or when other objects are only
performing query for getting some information from it. The object that is
changed as in the whole process known as the target of the operation.

• Which class is the center of all classes and associations involved in the
operation? If the classes and associations form a star around a single class, it is
the target of the operation.

• If the object is some real world object represented internally, then what real
object would you push, move, activate, or otherwise manipulate to initiate the
operation?

2.5 DESIGN OPTIMIZATION

The inefficient but correct analysis model can be optimized to make implementation
more efficient. To optimize the design, the following things should be done:

a) Adding Redundant Associations for Efficient Access

Redundant associations do not add any information, thus during design we should
actually examine the structure of object model for implementation, and try to establish
whether we can optimize critical parts of the completed system. Can new associations
be added, or old associations be removed? The derived association need not to add
any information to the network, they help increasing the model information in
efficient manner.

We can analyze the use of paths in the association network as follows:

• Evaluate each operation

• Find associations that it must pass through to get information. Associations can
be bi-directional (generally by more than one operation), or unidirectional,
which can be implemented as pointers.

 25

Object Design

Figure 1: Derived attribute to avoid recomputation

to
he

t.
ents is large, this algorithm grows linearly in the number of

elements.

equired: by explicit code,
by periodic recomputation, or by using active values.

ate operation on the base object to explicitly update

e
ttributes can be recomputed periodically, instead of after every base value

change.

For each operation, we should know the followings:

• How frequently is the operation needed, and how much will it cost?
• What is the fan-out along a path through the network? To find fan-out of the

complete path, multiply the average count of each “many” associations found in
the path with individual fan-outs.

• What are the objects that satisfy the selection criteria (if specified) and are
operated on? When most of the objects are rejected during traversal for some
reason, then a simple nested loop may be inefficient at finding target objects.

b) Rearranging the Execution Order for Efficiency
As we already know algorithm and data structure are closely related to each other, but
data structure is considered as the smallest but very important part of algorithm. Thus,
after optimizing the data structure, we try to optimize the algorithm itself.

In general, algorithm optimization is achieved by removing dead paths as early as
possible. For this, we sometimes reverse the execution order of the loop from the
original functional model.

c) Saving Derived Attributes to Avoid Recomputation
Data which is derived from other data should be stored in computed form to avoid
re-computation. For this, we can define new classes and objects, and obviously, these
derived classes must be updated if any base object is changed.

 {ordered}

 {ordered} Operation

Text /
location

Attribute

Text /
location

Operation
list

region

Attribute
list

region Class box

location

{ordered}

{ordered}

Operation

 text

Attribute

 text Class box

Location

Figure 1 shows a use of derived object and derived attribute in OOM. Each class
box contains an ordered list of attributes and operations, each represented as a next
string (Figure 1(a)). We can find the location of any attribute by adding the size of all
elements in front of it, to the location of the class box itself [note: it is quite similar
the array address calculation]. If a new attribute string is added to the list, then t
locations of the ones after it in the list are simply offset by the size of the new
element. If an element is moved or deleted, the elements under it must be redrawn.
Overlapping elements can be found by scanning all elements in front of the deleted
element in the priority list for the sheet and comparing them to the deleted elemen
If the number of elem

As discussed earlier, the change in base object should update the related derived
classes. There are three ways to know when an update is r

Explicit update: Every derived attribute is expressed as set of basic base objects. The
designer finds the derived attributes that were affected by change in basic attributes.
Then, he inserts code into the upd
the depending derived attributes.
Periodic re-computation: Generally, base values are updated in groups. Thus, all th
derived a

 26

Object Oriented Design Active Value: An active value is a value that has dependent values and update
operations. Each dependant value is registered to an action value. Updation operation
of base value triggers that updates of all dependant values and the calling code need
not explicitly invoke the updates.

 Check Your Progress 2

1) What are the metrics for choosing the best algorithm?
……………………………………………………………………………………

……………………………………………………………………………………

2) What are the ways of finding out whether an update is required or not for
derived attributes?

……………………………………………………………………………………

……………………………………………………………………………………

3) Give an example of an active value.

……………………………………………………………………………………

……………………………………………………………………………………

Every program passes through several states, and these states are defined by
implementing appropriate controls. In the next section, we will discuss
implementation of controls.

2.6 IMPLEMENTATION OF CONTROL

As we know, controls are implemented around states and tasks (maybe concurrent
tasks). Now, let us see three different implementation:

2.6.1 State as Location within a Program
In this traditional approach, the location of control within a program implicitly defines
the program state. Any finite state machine can be implemented as a program (easily
by using ‘gotos’).

One technique for converting a state diagram to code is as follows:

i) Identify the main control path. Starting with the first state, find a path from the
diagram which corresponds to the expected sequence of events. Keep the names
of states in a linear sequence that now forms a sequence of statements in the
program.

ii) Identify alternate paths that branch off the main path and later joined again.
These become conditional statements in the program.

iii) Identify loops i.e., the backward paths branching off from main path, and
earlier. Multiple backward paths that not crossing over form nested loops.

iv) Left out states transitions correspond to exception conditions which can be
tackled by exception handling, or error routines, or even by setting and testing
of status flags.

2.6.2 State Machine Engine
The most direct approach to implement control is to have some way of explicitly
representing and executing state machines. With this approach, we can make outline
of the system where classes from object model are defined, state machines from
dynamic model are given, and stubs of action routines can be created. A stub is the
minimal definition of a function of a subroutine without any internal code. By
using of object oriented language, the state machine mechanism can easily be created.

 27

Object Design 2.6.3 Control as Concurrent Tasks
As you know, any object can be implemented as a task in the programming language,
or operating system. This is the most general approach because it keeps the inherent
concurrency of real objects. Events are implemented as inter-task calls and as such,
the task uses its location within the program to keep track of its state.

As we have discussed adjusting inheritance is one of the steps of object design. In the
next section, we will discuss how inheritance is adjusted.

2.7 ADJUSTMENT OF INHERITANCE

During object design, inheritance is readjusted by rearranging classes and operations,
and abstracting common behavior.

2.7.1 Rearranging Classes and Operations
The different, yet similar, operation of different classes can be slightly modified so
that they can be covered by a single inherited operation. The chances of inheritance
can be increased by the following kind of adjustments:

i) Some operations needs less arguments than other similar operations, like
drawing an object, e.g., circle, rectangle, etc., with, or without, color fill. Thus,
the attribute color can be accepted, or ignored for consistency with color
displays.

ii) Some operations need less argument than other, because they are special case of
general arguments. Thus, varied newer operation can be implemented by calling
general operation and new argument values. For example, insertion in the
beginning or end of the list are special cases of insertion in the list.

iii) Different classes can have similar attributes, but different names. Thus, they can
be combined and placed in the base class so that the operation to access the
attribute may match in different classes.

 iv) Sometimes an operation is required by a subset of classes. In this case, declare
the operation in base class, and all those derived classes that do not need it can
be declared as no-operation.

2.7.2 Abstracting Out Common Behavior
Inheritance is not always recognised during the analysis phase of development, so it
is necessary to re-evaluate the object model to find common operations between
classes. Also, during design, new classes and operations may be added. If a set of
operations and/or attributes seems to be repeated in two classes, then it indicates that
the two classes are specialised variation of the same general class.

When common behavior is recognised, a common super class can be created which
implements the shared features, leaving only the specialized features in the derived
classes. This transformation of the object model is called abstracting out a common
super class or a common behavior.

The creation of an abstract super class also improves the extensibility of a software
product.

Associations are useful for finding access paths between objects in the system. During
object design itself, we should implement associations. In the next section we will
discuss the designing of a association.

 28

Object Oriented Design
2.8 DESIGN OF ASSOCIATIONS
Before designing associations, it is necessary to know the way they are used. For this,
analysis of association traversals is necessary. It also important to find out whether the
association is one-way association or two-way association.

2.8.1 Analyzing Association Traversal
Till now, we have assumed that associations are bi-directional. But in the case of
traversal in only one direction in any application, the implementation becomes easier.
However, for finding unidirectional associations we need to be extra cautious, as any
new operation added later may be required to traverse the association in the opposite
direction also. The bi-directional association makes modification, or expansion easier.

To change our decision of implementation strategy with minimum effort, we should
hide the implementation, using access operations to traverse and update the
association.
2.8.2 One-way Associations
When an association is traversed in only one direction, then it is implemented as a
pointer, i.e., an attribute that contains an object reference. If the multiplicity is ‘one’
as shown in Figure 2, then it is simple pointer; otherwise it is a set of pointers.
 Work-for

Teacher

Math _Teacher

School

Math_Students

School Teacher

Figure 2: Implementation of a one-way association using pointers

2.8.3 Two-way Associations
Mostly, associations are traversed in both directions, although not usually with equal
frequency. There are three approaches for implementation.
• In bi-directional associations, if one direction association is rarely used, then we

should implement this as unidirectional association. Searching can perform the
reverse association. This way, we can reduce the storage and update cost.

• Implementing it as a bi-directional association using the different techniques
discussed in previous sections will turn up as shown in Figure 3. This approach
gives faster access but also requires the updation of other attributes in case of
any change a otherwise the link will become inconsistent.

School Teacher
Work-for

 Set

School

Students

Teacher

English_
Teacher

 English Students

Figure 3: Implementation of two-way association, using pointer

 29

Object Design • Implementing it as a distinct association object, i.e., independent of either class
as shown in Figure 4. The association object may be implemented using two
objects: one in forward direction, and the other in the reverse direction. This
increases efficiency when hashing is used, instead of attribute pointer.

Figure 4: Implementation of association as an object

(School)

(School)

Teacher

Teacher

Teacher

Teacher

Teacher

This approach is suitable in situations where modify action is minimal, or almost nil.

 Check Your Progress 3

1) List the steps for converting the state diagram to code.

……………………………………………………………………………………

……………………………………………………………………………………

2) What kinds of adjustments are required to increase the chances of inheritance.
……………………………………………………………………………………

……………………………………………………………………………………

3) What is the advantage of two-way association?

……………………………………………………………………………………

……………………………………………………………………………………

2.9 SUMMARY
This unit explains that the design model is driven by the relevance to computer
implementation. The design model must be reasonably efficient and practical to
encode. It consists of optimizing, refining and extending the object model, dynamic
model and functional model until they are detailed enough for implementation.

In this unit, we have discussed the steps taken in object design: what the approach
should be for algorithm selections, how design is optimized by providing efficient
access and rearranging execution order, by avoiding recomputation. This unit also
discussed controls implementations, and in the last section of this unit, issues related
to design of associations were discussed.

2.10 SOLUTIONS/ANSWERS

Check Your Progress 1
1) The three models that are used to define operations on classes are:

 Object Model = Object model diagram + data dictionary

 Dynamic Model = State diagrams + global event flow diagram
 Functional Model = Data flow diagrams + constraints.

2) Object design is a very interactive process, which decides the relationship
between objects, classifies operations on classes, designs algorithms
associations, and determines overall system representation.

 30

Object Oriented Design 3) To readjust the inheritance the following steps should be taken:

i) Rearrange and adjust classes operations to increase inheritance.

 ii) Abstract common behaviour out of groups of classes.

Check Your Progress 2
1) Matrices for choosing the best algorithms are:

• Computational complexity

• Ease of implementation and understandability

• Flexibility.

2) The ways to find out whether an update is required or, not are:

• Explicit update

• Periodic recomputation

• Active values

3) One example of active value is gross salary, which has values as TA, DA, HRA,
etc.

Check Your Progress 3
1) a) Finding main control path

b) Finding conditional statements

 c) Finding loops

 d) Finding exception handling, and error routines.

2) a) Some attributes can be added, or ignored in base class operation

 b) Some variations can be made in derived class from abstract classs.

 c) If an operation is not required by some classes in a group, then can it be
declared as no-operation.

 d) Similar attributes can be combined in one abstract base class.

3) Two-way association has following advantages:

a) Independent of classes.

 b) Useful for existing predefined classes which are not modified.

 31

Advance Object Design
UNIT 3 ADVANCE OBJECT DESIGN

Structure Page Nos.

3.0 Introduction 31
3.1 Objectives 31
3.2 Control and its Implementation 32
 3.2.1 Control as a State within Program
 3.2.2 Control as a State Machine Engine
 3.2.3 Control as Concurrent Task
3.3 Inheritance Adjustment 35
3.4 Association: Design 37
3.5 Object Representation 38
3.6 Design Optimization 39
3.7 Design Documentation 43
3.8 Summary 43
3.9 Solutions/Answers 45

3.0 INTRODUCTION

As discussed earlier analysis is the first step of the OMT methodology. It is concerned
with devising a precise, concise, understandable and correct model of the realworld.
For example, before building any complex thing, such as a house, a bridge, or a
hardware-software system, the builder must understand the requirement of the user,
and it is also necessary to know the realworld environment in which it will exist.

The advanced object design is a complex task. The objects discovered during analysis
serve as a skeleton of the design. The operations identified during analysis should be
expressed as algorithms. Advanced object oriented design is basically a process of
refinement, or adding the details to the body of an object.

In this unit, you will learn how to design a formal and rigorous model of real-world
problems by applying the findings of the analysis phase of OMT. The object design
phase determines the complete definition of classes and associations used in the
implementation. The advanced object design is a process to create architecture of the
realworld problems. The advanced object design is analogous to the preliminarily
design phase of the traditional software development cycle.

3.1 OBJECTIVES
After studying this unit, you should be able to:

• combine the three OOAD models to obtain operations on classes;

• design algorithms to implement operations on classes;

• optimize access paths to data;

• implement control for external interactions;

• adjust class structure to increase inheritance;

• design association;

• determine object representation, and

• package classes and association into modules.

 32

Object Oriented Design
3.2 CONTROL AND ITS IMPLEMENTATION

In this unit, we will start our discussion with explanation of state-event models.
Let us define an state-event model. “State-event model is a model which shows the
sequence of events happening on an object, and due to which there are changes in the
sate of an object”. In the state-event model, the events may occur concurrently and
control resides directly in several independent objects. As the object designer you
have to apply a strategy for implementing the state event model. There are three basic
approaches to implementing system design in dynamic models. These approaches are
given below:

• Using the location within the program to hold state (procedure-driven system).

• Direct implementation of a state machine mechanism (event-driven system).

• Using concurrent tasks.

3.2.1 Control as State within Program
1. The term control literally means to check the effect of input within a program.

For example, in Figure1, after the ATM card is inserted (as input) the control of
the program is transferred to the next state (i.e., to request password state).

2. This is the traditional approach to represent control within a program. The
location of control within a program implicitly defines the program state. Each
state transition corresponds to an input statement. After input is read, the
program branches depending on the input event produce some result. Each input
statement handles any input value that could be received at that point. In case of
highly nested procedural code, low-level procedures must accept inputs that
may be passed to upper level procedures. After receiving input they pass them
up through many levels of procedure calls. There must be some procedure
prepared to handle these lower level calls. The technique of converting a state
diagram to code is given as under:

a) Identify all the main control paths. Start from the initial state; choose a path
through the diagram that corresponds to the normally expected sequence of
events. Write the names of states along the selected path as a linear sequence.
This will be a sequence of statements in the program.

b) Choose alternate paths that branch off the main path of the program and rejoin it
later. These could be conditional statements in the program.

c) Identify all backward paths that branch off the main loop of the program and
rejoin it earlier. This could be the loop in the program. All non-intersecting
backward paths become nested loops in the program.

d) The states and transitions that remain unchecked correspond to exception
conditions. These can be handled by applying several techniques, like error
subroutines, exception handling supported by the language, or setting and
testing of status flags.

To understand control as a state within a program, let us take the state model for the
ATM class given below in Figure 2 showing the state model of the ATM class and the
pseudo code derived from it. In this process first, we choose the main path of control,
this corresponds to the reading of a card querying the user for transaction information,
processing the transaction, printing a receipt, and ejecting the card. If the customer
wants to process for some alternates control that should be provided. For example, if
the password entered by the customer is bad, then the customer is asked to try again.

 33

Advance Object Design

 transaction failed

take cash

Request continuation

transaction succeed

Dispense cash

Process transaction

enter amount

enter type

Request amount

account OK

Request type

Verify account

enter password

insert card

Request Password

Main Screen

 bad account

Take card

Card rejected

Finish

Take card

Figure 1: Control of states and events in ATM

Pseudocode of ATM control. The pseudocode for the ATM is given as under:
do forever
 display main screen
 read card
 repeat
 ask for password
 read password
 verify account
 until account verification is OK
 repeat
 repeat
 ask for type of transaction
 read type
 ask for amount
 read amount
 start transaction
 wait for it to complete
 until transaction is OK
 dispense cash
 wait for customer to take it
 ask whether to continue
 until user asks to terminate
 eject card
 wait for customer to take card

 34

Object Oriented Design These lines are the pseudocode for the ATM control loop, which is another form of
representation of Figure 1. Furthermore, you can add cancel event to the flow of
control, which could be implemented as goto exception handling code. Now, let us
discuss controls as a state machine engine.

3.2.2 Control as a State Machine Engine

First let us define state machine: “the state machine is an object but not an
application object. It is a part of the language substrate to support the syntax of
application object”. The common approach to implement control is to have some way
of explicitly representing and executing state machines. For example, a general “state
machine engine” class could provide the capability to execute a state machine
represented by a table of transitions and actions provided by the application. As you
know, each object contains its own independent state variable and could call on the
state engine to determine the next state and action.

This approach helps to quickly progress from the analysis model to a skeleton
prototype of the system by defining classes from the object model, state machines
from the dynamic model, and creating “stubs” of the action routines. A stub could be
stated as “the minimal definition of a function or subroutine without any internal
code”. Thus, if each stub-prints out its name, this technique allows you to execute the
skeleton application to verify that the basic flow of control is correct or not.

State machine mechanisms can be created easily using an object oriented language.

3.2.3 Control as Concurrent Tasks

The term control as concurrent task means applying control for those events of the
object that can occur simultaneously. An object can be implemented as a task in the
programming language or operating system. This is the most general approach of
concurrency controls. With this you can preserve the inherent concurrency of real
objects. You can implement events as inter-task calls using the facilities of the
language, or operating system.

As far as OO programming languages are concerned, there are some languages, such
as Concurrent Pascal or Concurrent C++, which support concurrency, but the
application of such languages in production environments is still limited. Ada
language supports concurrency, provided an object is equated with an Ada task,
although the run-time cost is very high. The major object oriented languages do not
yet support concurrency.

 Check Your Progress 1

1) Briefly explain state diagram by taking one example.
…………………………………………………………………………….

……………………………………………………………………………..

2) Explain concurrent task by taking a suitable example.
…………………………………………………………………………….

………………………………………………………………………….….

……..………………………………………………………………………

3) Explain the following terms.
Event, State, and Operation with respect to the advanced object modeling
concept.
…………………………………………………………………………….

…………………………………………………………………………….

 35

Advance Object Design
3.3 INHERITANCE ADJUSTMENT

As you know in object oriented analysis and design the terms inheritance defines a
relationship among classes, wherein one class shares the structure or behavior defined
in one or more classes. As object design progresses, the definitions of classes and
operations can often be adjusted to increase the amount of inheritance. In this case, the
designer should:

• Rearrange and adjust classes and operations to increase inheritance
• Abstract common behavior out of groups of classes
• Use delegation to share behavior when inheritance is semantically invited.

Rearrange Classes and Operations
Sometimes, the same operation is defined across several classes and can easily be
inherited from a common ancestor, but more often operations in different classes are
similar, but not identical. By slightly modifying the definitions of the operations or the
classes, the operations can often be made to match so that they can be covered by a
single inherited operation. The following kinds of adjustments can be used to increase
the chance of inheritance:

• You will find that some operations may have fewer arguments than others. The
missing arguments can be added but ignored. For example, a draw operation on
a monochromatic display does not need a color parameter, but the parameter can
be accepted and ignored for consistency with color displays.

• Some operations may have fewer arguments because they are special cases of
more general arguments. In this case, you may implement the special operations
by calling the general operation with appropriate parameter values. For
example, appending an element to a list is a special case of inserting an element
into list; here the insert point simply follows the last element.

• Similar attributes in different classes may have different names. Give the
attributes the same name and move them to a common ancestor class. Then
operations that access the attributes will match better. Also, watch for similar
operations with different names. You should note that a consistent naming
strategy is important to avoid hiding similarities.

• An operation may be defined on several different classes in a group, but be
undefined on the other classes. Define it on the common ancestor class and
declare it as a no-op on the classes that do not care about it. For example, in
OMTool the begin-edit operation places some figures, such as class boxes, in a
special draw mode to permit rapid resizing while the text in them is being
edited. Other figures have no special draw mode, so the begin-edit operation on
these classes has no effect.

Making Common Behavior Abstract
Let us describe abstraction “Abstraction means to focus on the essential, inherent
aspects of an entity and ignoring its accidental properties”. In other words, if a set of
operations and/or attributes seems to be repeated in two classes. There is a scope of
applying inheritance. It is possible that the two classes are really specialised variations
of the something when viewed at a higher level of abstraction.

When common behavior has been recognised, a common super class can be created
that implements the shared features, leaving only the specialised features in the
subclasses. This transformation of the object model is called abstracting out a
common super class or common behavior. Usually, the resulting super class is
abstract, meaning that there are no direct instances of it, but the behavior it defines
belongs to all instances of its subclasses. For example, again we take a draw operation

 36

Object Oriented Design of a geometric figure on a display screen requires setup and rendering of the
geometry. The rendering varies among different figures, such as circles, lines, and
spines, but the setup, such as setting the color, line thickness, and other parameters,
can be inherited by all figure classes from abstract class figure.

The creation of abstract super classes also improves the extensibility of a software
product, by keeping space for further extension on base of abstract class.

Use Delegation to Share Implementation
As we now know, inheritance means the sharing of to the behavior of a super class by
its subclass. Let us see how delegation could be used for this purpose. Before we use
delegation, let us try to understand that what actually delegation can do.

The term delegation “Delegation consists of catching an operation on one object
and sending it to another object that is part, or related to the first object. In this
process, only meaningful operations are delegated to the second object, and
meaningless operations can be prevented from being inherited accidentally”. It is
true that Inheritance is a mechanism for implementing generalization, in which the
behavior of super class is shared by all its subclasses. But, sharing of behavior is
justifiable only when a true generalization relationship occurs, that is, only when it
can be said that the subclass is a form of the super class.

Let us take the example of implementation of inheritance. Suppose that you are about
to implement a Stack class, and you already have a List class available. You may be
tempted to make Stack inherit from List. Pushing an element onto the stack can be
achieved by adding an element to the end of the list and popping an element from a
stack corresponds to removing an element from the end of the list. But, we are also
inheriting unwanted list operations that add or remove elements from arbitrary
positions in the list.

Often, when you are tempted to use inheritance as an implementation technique, you
could achieve the same goal in a safer way by making one class an attribute or
associate of the other class. In this way, one object can selectively invoke the desired
functions of another class, by using delegation rather than applying inheritance.

A safer implementation of Stack would delegate to the List class as shown in
Figure 2. Every instance of Stack contains a private instance of List. The Stack ::
push operation delegates to the list by calling its last and add operations to add an
element at the end of the list, and the pop operation has a similar implementation
using the last and remove operations. The ability to corrupt the stack by adding or
removing arbitrary elements is hidden from the client of the Stack class.

Add
Remove
First
last

List

Stack

Push
pop

Body: list {private}

Push
Pop

Add
Remove
First
last

List Body: list {private}

 Discouraged Recommended

Figure 2: Alternative implementations of a Stack using inheritance (left) and delegation (right)

 37

Advance Object Design By Figure 2, it is obvious that we should discourage the use of inheritance to share the
operations between two related classes. Instead, we should use delegation so that one
class can selectively invoke the desired functions of another class. Now, you are
aware of the concept of inheritance and its adjustment. In the next section, we will
discuss association design and different types of associations.

3.4 ASSOCIATION: DESIGN

Before we define association design let us define association “Association is the
group of links between two objects in an object model”. It is helpful in an finding
paths between objects. It is a conceptual entity, which can be used for modeling and
analysis. At the final phase of advance object design, you must use strategy for
applying association in the object model. Association is also defined as “a group of
links between two objects with common structure and common semantic”.
Analyzing Association Traversal
Association Traversal should be understood properly for an association design
explanation. Analyzing association traversal means analyzing traversal between the
objects. Associations are inherently bi-directional, which is certainly true in an
abstract sense. But, if some associations in your application are only traversed in one
direction, in this case implementation can be simplified.
One-way Associations
If an association is only traversed in one direction, then it is called one-way
association. It is implemented as a pointer, or an attribute that contains an object
reference. If the multiplicity is “one”, as shown in Figure 3, then it is a simple pointer;
otherwise, if the multiplicity is “many”, then it is a set of pointers. If the “many” end
is ordered, then a list can be used, instead of a set. A qualified association with
multiplicity “one” can be implemented as a dictionary object.

Person

 Person

Company
Works-for

employees

Company

 Employer

Figure 3: Implementation of one-way association using pointers

Two-way Associations

Many associations are traversed in both directions, and these are called two-way
associations. You may observe that it is not essential to have some frequency of
traversal from both sides. It can be implemented by using the following three
methods:

• Implement as an attribute in one direction only, and perform a search when a
backward traversal is required. This approach is useful only if there is a great
disparity in traversal frequency in the two directions, and when minimizing both
the storage cost and the update cost are important. It is observed that the rare
backward traversal will be expensive.

• You should try to implement the attributes in both directions, as shown in
Figure 4. This approach is good because it permits fast access, but if either
attribute is updated then the other attribute must also be updated to keep the link
consistent. This approach is useful in the case to access outnumber updates.

 38

Object Oriented Design
Person Company

Person Company

Employees

Set

Work for

Employer

 Figure 4: Implementation of two-way association using pointers

• Implement as a distinct association object, independent of either class, as shown
in Figure 4. An association object is a set of pairs of associated objects stored in
a single variable-size object. For efficiency, you can implement an association
object using two dictionary objects, one for the forward direction and other for
the backward direction. This idea is useful for extending predefined, the classes
from a library which cannot be modified. Distinct association objects are also
useful for sparse associations. In sparse associations most objects of the classes
do not participate because space is used only for actual links.

Works-for

(Company)

(Company)

(Person)

(Person)

(Person)

(Person)

(Person)

Figure 5: Implementation of association as an object
Objects are representated using certain symbols. Now we will discuss object
representations.

3.5 OBJECT REPRESENTATION

The term object representation means “to represent object by using objects model
symbols”. Implementing objects is very simple. The object designer decides the use of
primitive types or to combine groups of related objects in their representation.

We can define a class in terms of other class. The classes must be implemented in
terms of built-in primitive data types, such as integers, strings, and enumerated types.
For example, consider the implementation of a social security number within an
employee object which is shown in Figure 6. The social security number attribute can
be implemented as an integer or a string, or as an association to a social security
number object, which itself can contain either an integer or a string. Defining a new
class is more flexible, but often introduces unnecessary indirection. It is suggested that
new classes should not be defined unless there is a definite need it.

 39

Advance Object Design

Figure 6: Alternative representations for an attribute
In a similar way, the object designer decides whether to combine groups of related

Check Your Progress 2

1) Explain inheritance with support of suitable example.

………………………………………………………………………….….

..……………………………………………………………………………

…………………………………………………………………………….

2) Describe the association design of an object by giving one example of it.

………………………………………………………………………….…

…………………………………………………………………………….

…………………………………………………………………………….

3) The definition of classes and operation can often be adjusted to increase the

…………………………….

…………………………………………………………………………….

…………………………………………………………………………….

Optimization is one of the areas of computing which gets great importance and

objects or not.

amount of inheritance”. Justify this statement.
………………………………………………

considerations. Now, let us discuss the optimization possibilities of a design.

3.6 DESIGN OPTIMIZATION

In the previous Section, we have seen various ways of representing objects. This
he

ess

During design optimization as a designer you must keep the following points in his

• Add redundant associations to minimize access cost, and to maximize

• computation for greater efficiency up to possible instant.
ns.

Now let us discuss these issues one by one:

Section will cover very interesting and important aspects of design optimization. T
basic design model uses the analysis model as the framework for implementation. The
analysis model captures the logical information about the system. To get better result,
the design model should contain details to support efficient information access. The
inefficient, but semantically-correct analysis model can be optimized to make
implementation more efficient, but an optimized system is more obscure, and l
likely to be reusable in another context. For the design optimization, as a designer,
you must strike an appropriate balance between efficiency and clarity.

mind:

convenience
Rearrange the

• Save derived attributes to avoid recomputation of complicated expressio

Employee

SS: string

Employee SS number SSN

SS: integer

Employee

 SSN: string

Employee SS number

SSN: string

SSN

 40

Object Oriented Design Adding Redundant Associations for Efficient Access
The term redundant association means using “duplicate association for efficient
access”. During analysis, it is not a good idea to have redundancy in the association
network because redundant associations do not add any information. During design,
however, you should evaluate the structure of the object model for implementation.

This can be done by asking questions:

i) Is there a specific arrangement of the network that would optimize critical
aspects of the completed system?

ii) Will adding new associations that were useful during analysis restructure the
network? All this sometimes may not produce the most efficient network, one
that can handle complex access patterns, as well as the related frequencies of
various kind of access.

To describe the analysis of access paths, consider the example of the design of a
company’s employee skills database. A part of the object model from the analysis
phase is shown in Figure 7. The operation Company:: find-skill returns a set of
persons in the company with a given skill. For example, we may ask for the data of all
employees who speak Japanese.

Has-skill Employs
Skill Person Company

Figure 7: Chain of associations between objects

For this example, suppose that the company has 1000 employees, each of whom has
10 skills on average. A simple nested loop would traverse Employs 1000 times and
Has-skill 10,000 times. If only 5 employees actually speak Japanese, then the test-to-
hit ratio is 2000.

Now, let us see whether this figure can be improved or not. Actually, we can make
many possible improvements in this Figure. First, Has-skill need not be implemented
as an unordered list a hashed set. The hashing can be performed in a fixed interval of
time so that the cost of testing whether a person speaks Japanese is constant, provided
a unique skill object represents speaks Japanese. This rearrangement reduces the
number of tests from 10,000 to 1,000, or one per employee.

For those cases where the number of hits from a query is low (since only a fraction of
objects satisfy the test) we can build an index to improve access to objects that must
be frequently retrieved. For example, we can add a qualified association Speaks
language from Company to Employee, where the qualifier is the language spoken
(Figure 8). This permits us to immediately access all employees who speak a
particular language with no wasted accesses. But there is a cost to the index: “It
requires additional memory, and it must be updated whenever the base associations
are updated”. The object designer must decide when it is useful to build indexes.
Here, we have to consider the case where most queries return all of the objects in the
search path, then an index really does not save much because the test-to-hit ratio in
this case is very close to 1.

 Speak language
 language Company

 Figure 8: Index for personal skills database

From Figure 8, it is obvious that speaks language is a derived association, defined in
terms of underlying base associations. The derived association does not add any
information to the network, but permits the model information to be accessed in a
more efficient manner.

 41

Advance Object Design You can analyse the use of paths in the association network in the following steps:

• Examine each operation and see what associations must traverse in order to
obtain information. For this it is not necessarily those associations traverse in
both directions.

For each operation, you should note the following points:

• How often is the operation called? How costly is the operation to perform?

• What is the “fan-out” along a path through the network? Estimate the average
count of each “many” association encountered along the path. Multiply the
individual fan-outs to obtain the fan-out of the entire path, which represents the
number of accesses on the last class in the path. Note that “one” links do not
increase the fan-out, although they increase the cost of each operation slightly.
But there is no need to worry about such small effects.

• What is the fraction of “hits” on the final class, (objects that meet selection
criteria, if any, and are operated on? If most objects are rejected during the
traversal for some reason, then a simple nested loop may be inefficient for
finding target objects.

Rearrange the Execution Order for Efficiency
Rearranging the execution order for efficiency means executing such job which has
less execution time. By rearranging the object in the increasing order of their
execution time, we can increase the efficiency of the system.

After adjusting the structure of the object model to optimize frequent traversals, the
next thing to optimize is the algorithm itself. Actually, “data structure and algorithms
are directly related to each other”, but we find that usually the data structure should be
considered first.

The way to optimize an algorithm is “to eliminate dead paths as early as possible”.
For example, suppose we want to find all employees who speak both Japanese and
French, and suppose 5 employees speak Japanese and 100 speak French. In this case,
it is better to test and find the Japanese speakers first, then test if they speak French. In
general, it pays to narrow the search as soon as possible. Sometimes the execution
order of a loop must be inverted from the original specification in the functional
model to get efficient results.
Saving Derived Attributes to Avoid Recomputation
As we have already discussed, “redundancy means duplication of same data”. But, If
multiple copies of the same data is present in a system, then it can increase
availability of data, but the problem of computing overhead is also associated with it.
To overcome this problem we can “cache” or store redundant data in its computed
form and objects or classes may be defined to retain this information. The class that
contains the cached data must be updated if any of the objects that it depends on are
changed.

Figure 9 shows a use of a derived object and derived attribute in OMTool. Each class
box contains an ordered list of attributes and operations, each represented as a text
string (left of diagram). Given the location of the class box itself, the location of each
attribute can be computed by adding up the size of all the elements in front of it. Since
the location of each element is required frequently, the location of each attribute string
is computed and stored. The region containing the entire attribute list is also computed
and saved. In this way we can avoid the testing of input points against attribute text
element. It is shown on the right side in Figures 9 (a) and (b). If a new attribute string
is added to the list, then the locations of the ones after it in the list are simply offset by
the size of the new element.

 42

Object Oriented Design

{ordered}

Operation

text

Class box

Location

Attribute

text

Attribute

 Text
location

Operation

Region
Location

Class box

location

Attribute
list
Region

Operation
list
region

Figure 9 (a) Figure 9 (b)
Figure 9: Derived attribute to avoid recomputation

You can see the use of an association as a cache which is shown in Figure 10. In this
figure a sheet contains a priority list of partially overlapping elements. If an element is
moved or deleted, the elements under it must be redrawn. Scanning all elements in
front of the deleted element in the priority list of the sheet, and comparing them to the
deleted element can uncover overlapping elements. If the number of elements is large,
this algorithm grows linearly in the number of elements. The Overlaps association
stores those elements that overlap an object, and precede it in the list. This association
must be updated when a new element is added to it, but testing for overlap using the
association is more efficient.

under
 Overlaps

over

next

Diagram
element

Priority
list

Previous

Figure 10: Association as a cache

After the base value is changed, you should update derived attributes. Now, the
question is “how to recognise the need of update. There are three ways to recognize
when an update is needed: by explicit code, by periodic recomputation, or by using
active values. Now, let us three ways one by one.
• Explicit update: In explicit update, each derived attribute is defined in terms of

one, or more fundamental base object(s). The object designer determines which
derived attributes are affected by each change to a fundamental attribute, and
inserts code into the update operation on the base object to explicitly update the
derived attributes that depend on it.

• Periodic recomputation: Base values are often updated in bunches.
Sometimes, it is possible to simply recompute all the derived attributes
periodically without recomputing derived attributes after each base value is
changed. Recomputation of all derived attributes can be more efficient than
incremental update because some derived attributes may depend on several base
attributes, and might be updated more than once by an incremental approach.
Also, periodic recomputation is simpler than explicit updates and less prone to
bugs. On the other hand, if the data set changes incrementally, a few objects at a
time, periodic recomputation is not practical because too many derived
attributes must be recomputed when only a few are affected.

• Active values: An active value is a value that has dependent values. Each
dependent value registers itself with the active value, which contains a set of
dependent values and update operations. An operation to update the base value
triggers updates of all the dependent values, but the calling code need not
explicitly invoke the updates.

Now, let us discuss design documentation in the designing of an object.

 43

Advance Object Design
3.7 DESIGN DOCUMENTATION
The Design Document should be an extension of the Requirements Analysis Design.
“The Design Document will include a revised and much more detailed
description of the Object Model” in both graphical form (object model diagrams)
and textual form (class descriptions). You can use additional notation to show
implementation decisions, such as arrows showing the traversal direction of
associations and pointers from attributes to other objects.

The Functional Model can also be extended during the design phase, and it must be
kept current. It is a seamless process because object design uses the same notation as
analysis, but with more detail and specifics. It is good idea to specify all operation
interfaces by giving their arguments, results, input-output mappings, and side effects.

Despite the seamless conversion from analysis to design, it is probably a good idea to
keep the Design Document distinct from the Analysis Document. Because of the shift
in viewpoint from an external user’s view to an internal implementer’s view, the
design document includes many optimizations and implementation artifacts. It is
important to retain a clear, user-oriented description of the system for use in validation
of the completed software, and also for reference during the maintenance phase of the
object modeling.

 Check Your Progress 3

1) Improve the object diagram in Figure 11 by generalizing the classes Ellipse and
Rectangle to the class Graphics primitive, transforming the object diagram so
that there is only a single one-to-one association to the object class Boundary. In
effect, you have to changing the 0,1 multiplicity to exactly one multiplicity. As
it stands, the class Boundary is shared between Ellipse and Rectangle. A
Boundary is the smallest rectangular region that will contain the associated
Ellipse or Rectangle.

Boundary

Rectangle Ellipse

Figure 11: Portion of an object diagram with a shared class

…………………………………………………………………………….

……..………………………………………………………………………

2) Assign a data type to each attribute in Figure 12.

text x location
y location
width
length

Width
Length
Left margin
Right margin
Top margin
Bottom margin

LineColumn Page

Figure 12: Portion of an object diagram of a newspaper

…………………………………………………………………………….

……..………………………………………………………………………

 44

Object Oriented Design 3) Improve the object diagram in Figure 13 by transforming it, adding the class
(Political party). Associate Voter with a party. Discuss why the transformation
is an improvement.

Party C Party B Party A

Voter

Figure 13: Object diagram representing voter membership in a political party

…………………………………………………………………………….

……..………………………………………………………………………

……………………………………………………………………………..

……………………………………………………………………………..

4) Figure 14 is a state diagram for a garage door opener. Implement it by using
state as, location within a program. You may use pseudocode, or any structured
programming language.

Door closed Depress/start opening door

 Depress/start opening door

Door open Depress/start opening door

Closed Open

Closing

Opening

Figure 14: State diagram for a garage door opener

3.8 SUMMARY
Object design follows analysis and system design. The object design phase adds
implementation details, such as restructuring classes for efficiency, internal data
structures and algorithms to implement operations, implementation of control,
implementation of associations, and packaging into physical modules. Object design
extends the analysis model with specific implementation decisions and additional
internal classes, attributes, associations, and operations.

During object design, the definitions of internal classes and operations can be adjusted
to increase the amount of inheritance. These adjustments include modifying the
argument list of a method, moving attributes and operations from a class into a super
class, defining an abstract super class to cover the shared behavior of several classes,
and splitting an operation into an inherited part and a specific part. Delegation should
be used rather than inheritance when a class is similar to another class but not truly a
sub class.

 45

Advance Object Design Associations are the “glue” of our object model, which provides access paths between
objects. An association traversed in a single direction can be implemented as an
attribute pointing to another object, or a set of objects, depending on the multiplicity
of the association. A bi-directional association can be implemented as a pair of
pointers, but operations that update the association must always modify both
directions of access. Associations can also be implemented as association objects.
The exact representation of objects must be chosen. At some point, user-defined
objects must be implemented in terms of primitive objects, or data types supplied by
the programming language. Some classes can be combined. Programs must be
packaged into physical modules for editors and compilers, as well as for the
convenience of programming teams. Design decisions should be documented by
extending the analysis model, by adding detail to the object, dynamic, and functional
models.

3.9 SOLUTIONS/ANSWERS

Check Your Progress 1

1) State Diagram

An object can receive a sequence of input instructions. The state of an object can vary
depending upon the sequence of input instructions. If we draw a diagram which will
represent all the processes (input) and their output (states) then that diagram is known
as state diagram. Processes are represented by arrow symbol, and states by oval
symbol. For example, the screen of ATM machine has many states like main screen
state, request password state, process transaction state, etc.
2) Concurrent Task
The simultaneous occurrence of more than one event is called a concurrent task.
Operating systems can handle concurrent tasks efficiently. The Air Traffic Control
system (ATC) for examples, can manage concurrent tasks in fractions of a second.
3) Event
Happening of a process is called event. In other words, an object can receive many
input instructions. The changes that occur due to these instructions are called events.
For example, tossing a coin is input, but the appearance of HEAD or TAIL is an
event.

State
The position of an object at any moment is called its state. An object can have many
states. After receiving some input instructions, an object can change its state from one
to another.

Check Your Progress 2
1) Inheritance
Inheritance is one of the cornerstones of object-oriented programming language
because it allows a creation of hierarchical classifications. Using inheritance you can
create a general class that defines trails common, to a set of related items. More
specific classes can inherit this class, and each could add a certain unique thing to the
resulting new class. The class that inherits from another, class, or classes is called a
derived class or subclass, and the class/classes from which the derived class is made is
called, a base class or a super class.

For example, racing cars. Pick up cars and saloons, etc. are all different kinds of cars
in object-oriented terminology racing cars. Pick up cars, and saloons, etc. are all
subclasses of the car class. Similarly, as illustrated in Figure15, below, the car class is
the super class of sub classes like racing cars, saloons, sedans, convertibles, etc.

 46

Object Oriented Design

٠ ‡
ە ợ

Cars

٠ ‡
Φ

٠ ‡
7

٠ ‡
Ψ

Cars

Zen Alto Esteem

Figure 15: Hierarchy of Classes

Inheritance can be of various types, such as:

1. Single inheritance
2. Multiple inheritance
3. Hierarchical inheritance
4. Multilevel inheritance

Single Inheritance Hierarchical Inheritance

A

B B C D

A

A

C

B A

C

B

Multiple Inheritance Multiple Inheritance

Figure 16: Forms of inheritance

2) The Design of Associations

Associations are the “glue” of advanced object oriented analysis and the design
model. Association provides access paths between the objects. It is a type of
conceptual entity that can be used for analysis and modeling of an object. For
example:

Works for
Person Company

Figure 17: A simple form of Association

In the above example, there are two objects, person and company. These two objects
are linked (associated) with each other by a relation called works for.

 47

Advance Object Design 3) Adjustment of Inheritance

The definition of classes and operations can often be adjusted to increase the amount
of inheritance between the objects. The object designer can rearrange and adjust
classes to increase the inheritance among the different objects and classes. Sometimes
the same operation is defined across several classes and can easily be inherited from a
common ancestor. By slightly modifying the definitions of the operations, or the
classes, the operation often can be made to match. We also can extract common
behavior out of groups of classes to increase the inheritance. Similar attributes in
different classes may have different names, but by giving some common name and
moving them to ancestor class we can increase inheritance. An operation may be
defined on several different classes in a group but be undefined on the other classes.
To increase inheritance, we can define it on the common ancestor class and declare it
as a no-op on the classes that do not care about it. We can also use DELEGATION
instead of inheritance to share only meaningful attributes between a super class and its
sub class.

Check Your Progress 3

1) The improved generalized object diagram of class Ellipse and Rectangle is
given in the Figure below.

Boundary Boundary

Boundary Graphics
Primitive

Figure: 18 Object Diagram

Here, in this diagram, class Graphics primitive is the generalized class of both Ellipse
and Rectangle. The class Ellipse and Rectangle have single association with class
boundary. This single association is shown by drawing a line between class boundary
and generalized class Graphics primitive.

2) A derived association supports direct traversal from Page to Line. The line-page
association is derived by composing the line column and column page
association.

This association can be traversed from lines to pages. The Figure is shown below.

 Line Column Page

Figure 19: Association between different objects of a news paper.

The data type to the attributes of the Figure is

Attribute Data type
Width integer
Length integer
Left margin real
Right margin real
Top margin real
Bottom margin real
X location x: real
Y location y: real

 48

Object Oriented Design 3) The improved object diagram of object voter and object political party is shown
in the diagram below.

Register in Member Political

Party
Voter

Figure 20: Improved object diagram for representing voter membership in a political party

Political party membership is not an inherent property of a voter but a changeable
association. The revised model better represents voters with no party affiliation and
permits changes in party membership. If voters belong to more than one party, then
the multiplicity could easily be changed. Parties are instances of class Political Party
and need not be explicitly listed in the model: new parties can be added without
changing the model, and attributes can be attached to parties.

4) The Pseudo code for a garage door opener is listed below:

<closed> wait for depress event
<opening> start opening door

wait for door opening event
<open> wait for depress event
<closing> start closing door
 wait for either depress or door closed event:
 if depress event then go to opening
 if door closed event then go to closed

In the above pseudo code we are using go to as a jump command to jump from one
statement to other.

5

Ob ject Modeling

UNIT 1 OBJECT MODELING

Structure Page Nos.

1.0 Introduction 5
1.1 Objectives 5
1.2 Advanced Modeling Concepts 5
 1.2.1 Aggregation
 1.2.2 Abstract Class
1.3 Multiple Inheritance 9
1.4 Generalization and Specialisation 11
1.5 Meta Data and Keys 13
1.6 Integrity Constraints 14
1.7 An Object Model 17
1.8 Summary 18
1.9 Solutions/Answers 18

1.0 INTRODUCTION

In the previous Blocks of this Course we learned the differences between OOA and
OOAD and how UML is used for visualizing, specifying, constructing, and
documenting.

The goal of object design is to identify the object that the system contains, and the
interactions between them. The system implements the specification. The goals of
object-oriented design are:

(1) More closely to problem domain

(2) Incremental change easy
(3) Supports reuse. Objects during Object Oriented Analysis OOA focuses on

problem or in other word you can say semantic objects. In Object Oriented
Design we focuses on defining a solution. Object Oriented modeling is having
three phases object modeling, dynamic modeling, and function modeling. In
this Unit we will discuss the concepts of object modeling. We will also discuss
aggregation, multiple inheritance, generalisation in different form and metadata.

1.1 OBJECTIVES

After going through this unit, you should be able to:

• describe and apply the concept of generalisation;
• understand and apply the concepts abstract Class, multiple Inheritance;
• apply generalisation as an extension;
• apply generalisation as a Restriction, and
• explain the concept of Metadata and constraints.

1.2 ADVANCED MODELING CONCEPTS

You have to follow certain steps for object-oriented design.

These steps for OO Design methodology are:

1) produce the object model
2) produce the dynamic model
3) produce the functional model
4) define the algorithm for major operation
5) optimize and package.

 6

Modeling The first step for object-oriented designing is object modeling. Before we go into
details of object modeling first of all we should know “what is object modeling”? You
can say that Object modeling identifies the objects and classes in the problem
domain, and identifies the relationship between objects.

In this whole process first of all we have to identify objects, then structures, attributes,
associations, and finally services.

1.2.1 Aggregation
Aggregation is a stronger form of association. It represents the has-a or part-of
relationship. An aggregation association depicts a complex object that is composed of
other objects. You may characterize a house in terms of its roof, floors, foundation,
walls, rooms, windows, and so on. A room may, in turn be, composed of walls,
ceiling, floor, windows, and doors, as represented in Figure 1.

In UML, a link is placed between the “whole “and “parts” classes, with a diamond
head (Figure1) attached to the whole class to indicate that this association is an
aggregation. Multiplicity can be specified at the end of the association for each of
the part-of classes to indicate the constituent parts. The process of decomposing a
complex object into its component objects can be extended until the desired level of
detail is reached.

Roofs

Walls

Roofs

WindowsDoors

House

Figure 1: A house and some of its component

You can see that object aggregation helps us describe models of the real world that
are composed of other models, as well as those that are composed of still other
models. Analysts, at the time of describing a complex system of aggregates, need to
describe them in enough detail for the system at hand. In the case of a customer order
and services, a customer order is composed not only of header information, but also
the detail lines as well. The header and detail lines may each have public customer
comments and private customer service comments attached. In an order entry system,
detailed technical information about a product item appearing on a customer order line
may be accessible as well. This complex object-called an order can be very naturally
modeled using a series of aggregations. An order processing system can then be
constructed to model very closely the natural aggregations occurring in the real
world.

Aggregation is a concept that is used to express “part of” types of associations
between objects. An aggregate is, a conceptually, an extended object viewed as a
Unit by some operations, but it can actually be composed of multiple objects. One
aggregate may contain multiple whole-part structures, each viewable as a distinct
aggregate. Components may, or may not exist in their own right and they may, or may

7

Object Modeling not appear in multiple aggregates. Also an aggregate’s components may themselves
have their own components.

Aggregation is a special kind of association, adding additional meaning in some
situations. Two objects form an aggregate if they are tightly connected by a whole-
part relationship. If the two objects are normally viewed as independent objects, their
relationship is usually considered an association. Grady Booch suggests these tests to
determine whether a relationship is an aggregation or not:

• Would you use the phrase “part of” to describe it?
• Are some operations on the whole automatically applied to its parts?
• Are some attribute values propagated from the whole to all or some parts?
• Is there an intrinsic asymmetry to the association, where one object class is

subordinate to the other?

If your answer is yes to any of these questions, you have an aggregation. An
aggregation is not the same as a generalization. Generalization relates distinct
classes as a way of structuring the definition of a single object. Super class and
subclass refer to properties of one object. A generalization defines objects as an
instance of a super class and an instance of a subclass. It is composed of classes that
describe an object (often referred to as a kind of relationship). Aggregation relates
object instances: one object that is part of another. Aggregation hierarchies are
composed of object occurrences that are each part of an assembly object (often called
a part of relationship). A complex object hierarchy can consist of both aggregations
and generalizations.

Composition: A stronger form of aggregation is called composition, which implies
exclusive ownership of the part of classes by the whole class. This means that parts
may be created after a composite is created, but such parts will be explicitly removed
before the destruction of the composite. In UML, filled diamonds, as shown in Figure
2, indicate the composition relationship.

0..n 0..n

 Position

 Total

 Starting Date

 Salary

DepartmentDivisionCompany Person

Figure 2: Example of a composition

Figure 2 shows that a person works for a company, company has many division,
which are part of company and each division has many departments, which are again
part of division.

1.2.2 Abstract Class
An abstract class is used to specify the required behaviors (operations, or method
in java) of a class without having to provide their actual implementations. In other

 8

Modeling words you can say that methods without the implementation (body) are part of
abstract classes.

An abstract object class has no occurrences. Objects of abstract classes are not
created, but have child categories that contain the actual occurrences. A “concrete”
class has actual occurrences of objects. If a class has at least one abstract method, it
becomes, by definition, an abstract class, because it must have a subclass to override
the abstract method. An abstract class must be sub classed; you cannot instantiate it
directly.

Here you may ask one question: Why, are abstract classes are created? So the answer
to this question is:

• To organise many specific subclasses with a super class that has no concrete
use

• An abstract class can still have methods that are called by the subclasses. You
have to take is this correct point in consideration in case of abstract classes

• An abstract method must be overridden in a subclass; you cannot call it directly
• Only a concrete class can appear at the bottom of a class hierarchy.

Another valuable question to ask is: why create the abstract class method? Answer to
this question is:

• To contain functionality that will apply to many specific subclasses, but will
have no concrete meaning in the super class.

Shape
-orange
-color

+ move ()
+ resize ()
+draw ()

Rectangle

+draw ()

Polygon

+draw ()

Circle

+draw ()

Figure 3: How abstract and concrete classes are related. Consider the example of shapes.

For example in Figure 3, you can see that the shape class is a natural super class for
triangle, circle, etc.

Every shape requires a draw () method. But the method has no meaning in the Shape
super class, so we make it abstract.

The subclasses provide the actual implementations of their draw methods since
Rectangle, Polygon and Circle can be drawn in different ways. A subclass can
override the implementation of an operation inherited from a super class by declaring
another implementation. In this example, the draw method of rectangle class overrides
the implementation of the draw operation inherited from the Shape class. The same
applies to draw methods of Polygon and Circle.

Abstract classes can appear in the real world and can be created by modelers in order
to promote reuse of data and procedures in systems. They are used to relate
concepts that are common to multiple classes. An abstract class can be used to model
an abstract super class in order to group classes that are associated with each other, or

9

Object Modeling are aggregated together. An abstract class can define methods to be inherited by
subclasses, or can define the procedures for an operation without defining a
corresponding method. The abstract operation defines the pattern or an operation,
which each concrete subclass must define in its implementation in their own way.

 Check Your Progress 1

Give the right choice for the followings:

1) A class inherits its parent’s….

(a) Attribute, links
(b) Operations
(c) Attributes, operations, relationships
(d) Operations, relationships, link
…………………………………………………………………………….

…………………………………………………………………………….

2) If you wanted to organise elements into reusable groups with full information
hiding you would use which one of the following UML constructs?

(a) Package
(b) Class
(c) Class and interface
(d) Sub-system or component
…………………………………………………………………………….

…………………………………………………………………………….

3) Which of the following is not characteristic of an object?

(a) Identity
(b) Behavior
(c) Action
(d) State
…………………………………………………………………………….

…………………………………………………………………………….

…………………………………………………………………………….

4) Which of the following is not characteristic of an abstract class?

(a) At least one abstract method
(b) All the method have implementation (body)
(c) Subclass must implement abstract method of super class
(d) None of the above
…………………………………………………………………………….

…………………………………………………………………………….

Now, you are familiar with aggregation generalization, and abstract classes. As further
extension of object oriented concepts, in the next section we will discuss multiple
inheritance.

1.3 MULTIPLE INHERITANCE

Inheritance allows a class to inherit features from parent class (s). Inheritance allows
you to create a new class from an existing class or existing classes.

Inheritance gives you several benefits by letting you:

• Reduce duplication by building on what you have created and debugged
• Organise your classes in ways that match the real world situations and entities.

 10

Modeling

EMPLOYEE
Fname, Lname
Id
Pay ();
hire();

PERSON
Fname, Lname

Figure 4: Example of Inheritance

For example, in Figure 4, you can see that EMPLOYEE class is inherited from
PERSON class.

Multiple inheritance extends this concept to allow a class to have more than one parent
class, and to inherit features form all parents. Thus, information may be mixed from
multiple sources. It is a more complex kind of generalization; multiple inheritances
does not restrict a class hierarchy to a tree structure (as you will find in single
inheritance). Multiple inheritance provides greater modeling power for defining
classes and enhances opportunities for reuse. By using multiple inheritance object
models can more closely reflect the structure and function of the real world. The
disadvantage of such models is that they become more complicated to understand and
implement. See Figure 5 for an example of multiple inheritance. In this example, the
VAN classes has inherited properties from cargo Vehicle and Passenger vehicle.

Mini VAN Fulsize VAN

BUS CAR VAN Cargo Shop Cargo RAIL
CAN

Passenger Vehicle Cargo Vehicle

Vehicle

Figure 5: Example of Multiple Inheritance

The advantage of multiple inheritance is that it facilitates the re-use existing classes
much better than single inheritance. If the properties of two existing classes have to be
re-used and only single inheritance was available, then one of the two classes would
have to be changed to become a subclass of the other class.

However, multiple inheritance should be used rather carefully. As the inheritance
relationships that will be created through multiple inheritance may become rather
complex and fairly difficult to understand. It is seen as a controversial aspect of
object–orientation and, therefore, not implemented in some object-oriented languages,
such as Smalltalk, because sometimes multiple inheritance can lead to ambiguous
situations.

11

Object Modeling You will observe that:

• Working with multiple inheritance can be difficult in implementation if only
single inheritance is supported, but analysis and design models can be
restructured to provide a usable model. Rumbaugh et al. discusses the use of
delegation as an implementation mechanism by which an object can forward an
operation to another object for execution. The recommended technique for
restructuring-includes:

Delegation using an aggregation of roles a super class with multiple
independent generalizations can be recast as an aggregate in which each
component replaces a generalization.

For this you have to:

• Inherit the most important class and delegate the rest. Here a join class is made
a subclass of its most important super class.

• Nested generalization: factor on one generalization first, then the other,
multiplying out all possible combinations.

Rumbaugh suggests issues to consider when selecting the best work around:

• If subclass has several super classes, all of equal importance, it may be best to

use delegation, and preserve symmetry in the model
• If one super class clearly dominates and the others are less important,

implementing multiple inheritance via single inheritance and delegation may be
best

• If the number of combinations is small, consider nested generalization
otherwise, avoid it

• If one super class has significantly more features than the other super classes, or
one super class is clearly the performance bottleneck, preserve inheritance
through this path

• If nested generalization is chosen, factor in the most important criterion first,
then the next most important, etc.

• Try to avoid nested generalization if large quantities of code must be duplicated
• Consider the importance of maintaining strict identity (only nested

generalization preserves this). Now, let us discuss the concept and
specialization of generalization which is very important in respect of object
oriented modeling.

1.4 GENERALIZATION AND SPECIALIZATION

Generalization means extracting common properties from a collection of classes, and
placing them higher in the inheritance hierarchy, in a super class.

Generalization and specialization are the reverse of each other. An object type
hierarchy that models generalization and specialization represents the most general
concept at the top of an object type: hierarchy as the parent and the more specific
object types as children.

Much care has to be taken when generalizing (as in the real world) that the property
makes sense for every single subclass of the super class. If this is not the case, the
property must not be generalized.

Specialization involves the definition of a new class which inherits all the
characteristics of a higher class and adds some new ones, in a subclass.
Whether the creation of a particular class involves first, or second activity depends on
the stage and state of analysis, whether initial classes suggested are very general, or
very particular.

In other words, specialization is a top-down activity that refines the abstract class
into more concrete classes, and generalization is a bottom-up activity that abstracts
certain principles from existing classes, in order to find more abstract classes.

 12

Modeling We often organise information in the real world as generalisation/specialization
hierarchies. You can see an example of generalization/specialization in Figure 6.

Employee

Hourly
Worker

Salaried
Worker

 Manager Non-Manager

 Executive

Unit Super vision Dept Manager

Figure 6: Generalization hierarchy of employee class

For instance, an employee may either be a salaried or an hourly worker. A salaried
worker can be a manager, who in turn, can be an executive department manager, or a
unit supervisor. The employee classification is most general, salaried worker is more
specific and Unit supervisor is most specific. Of course, you might not model the
world exactly like this for all organizations, but you get the idea. Unit Supervisor is a
subtype of salaried worker, which is a subtype of employee. Employee is the
highest-level super type and salaried worker is the super type of executive, department
manager, and Unit supervisor. An object type could have several layers of subtypes
and subtypes of subtypes. Generalization/specialization hierarchies help describe
application systems and indicate where inheritance should be implemented in object-
oriented programming language environments.

Any occurrence of a particular class is an occurrence of all ancestors of that class; so
all features of a parent class automatically apply to subsclass occurrences. A child
class cannot exclude, or suppress, an attribute a parent. Any operation on a parent
must apply to all children. A child may modify an operation’s implementation, but not
is its public interface definition. A child class extends, parent features by adding new
features. A child class may restrict the range of allowed values for inherited parent
attributes.

In design and construction, operations on object data types can be over ridden, which
could substantially differ from the original methods (rather than just refining original
methods). Method overriding is performed to override for extension, for restriction,
for optimization, or for convenience. Rumbaugh et al. proposes the following
semantic rules for inheritance:

• All query operations (ones that read, but do not change, attribute values) are
inherited by all subclasses.

• All update operations (ones that change attribute values) are inherited across all
extensions.

13

Object Modeling • Update operations that change constrained attributes or associations are blocked
across a restriction.

• Operations may not be overridden to make them behave differently in their
externally visible manifestations from inherited operations. All methods that
implement an operation must have the same protocol.

• Inherited operations can be refined by adding additional behavior.

Both generalization and specialization can lead to complex inheritance patterns,
particularly via multiple inheritance. It is suggested that before making a final
decision on generalisation/specialisation you should understand these rules very
carefully and give the right choice for the following in respect of your system.

 Check Your Progress 2

1) Polymorphism can be described as

(a) Hiding many different implementations behind one interface
(b) Inheritance
(c) Aggregation and association
(d) Generalization
……………………………………………………………………………………

…….……………………………………………………………………………..

……………………………………………………………………………………

……………………………………………………………………………………

2) What phrase best represents a generalization relationship?

(a) is a part of
(b) is a kind of
(c) is a replica of
(d) is composed of
……………………………………………………………………………………

…….…………………………………………………………………………...…

……………………………………………………………………………………

……………………………………………………………………………………

3) All update operations in inheritance are updated

(a) across all extensions
(b) across only some of extensions
(c) only first extension
(d) None of the above.
……………………………………………………………………………………

…….…………………………………………………………………………...…

…………………………………………………………………………………....

1.5 METADATA AND KEYS

Now, we will discuss the basics of Metadata and keys.

Let us first discuss metadata. You are already familiar with metadata concept in your
database course. As you know, RDBMS uses metadata for storing information of
database tables. Basically, metadata is such set of data which describes other data. For
example, if you have to describe an object, you must have a description of the class
from which it is instantiated. Here, the data used to describe class will be treated as
metadata. You may observe that every real-world thing may have meta data, because
every real world thing has a description for them. Let us take the example of institutes

 14

Modeling and their directors. You can store that school A is having X as its direct, School B is
having Y as its director, and so on. Now, you have concrete information to keep in
metadata that is every institute is having a director.

KEY

Object instances may be identified by an attribute (or combination of attributes) called
a key. A primary key is an attribute (or combination of attributes) that uniquely
identifies an object instance and corresponds to the identifier of an actual object.
For example, customer number would usually be used as the primary key for customer
object instances. Two, or more, attributes in combination sometimes may be used to
uniquely identify an object instance. For example, the combination of last name, first
name and middle initial might be used to identify a customer or employee object
instance. Here, you can say that sometimes more than one attribute gives a better
chance to identify an object. For example, last name alone would not suffice because
many people might have the same last name. First name would help but there is still a
problem with uniqueness. All three parts of the name are better still, although a
system generated customer or employee number is bests used as an identifier if
absolute uniqueness is desired. Possible Primary Keys that are not actually selected
and used as the primary keys are called candidate keys.
A secondary key is an attribute (or combination of attributes) that may not uniquely
identify an object instance, but can describe a set of object instances that share some
common characteristic. An attribute (customer type) might be used as a secondary
key to group customers as internal to the business organisation (subsidiaries or
divisions) or external to it. Many customers could be typed as internal or external at
the same time, but the secondary key is useful to identify customers for pricing and
customer service reasons.

1.6 INTEGRITY CONSTRAINTS
You have already studied integrity constraints in DBMS course. Here, we will review
how these constraints are applied in the object oriented model.
Referential Integrity
Constraints on associations should be examined for referential integrity implications
in the database models. Ask when referential integrity rules should be enforced.
Immediately, or at a later time? When you are modeling object instances over time,
you may need to introduce extra object classes to capture situations where attribute
values can change over time. For instance, if you need to keep an audit trail of all
changes to an order or invoice, you could add a date and time attribute to the order or
invoice objects to allow for storage of a historical record of their instances. Each
change to an instance would result in another instance of the object, stamped for data
and time of instance creation.
Insert Rules
These rules determine the conditions under which a dependent class may be inserted
and they deal with restrictions that the parent classes impose upon such insertions.
The rules can be classified into six types.
Dependent : Permit insertion of child class instance only when the matching parent

class instance already exists
Automatic : Always permit insertion of a child class instance. If the parent class

instance does not exist, create one
Nullify : Always permit insertion of the child class instance.
Default : Always permit insertion of a child class in séance.
Customized : Allow child class instance insertion only if certain validity constraints

are met.
No Effect : Always permit insertion of the child class instance. No matching

parent class instances may or may not exist. No validity checking is
performed.

15

Object Modeling Domain integrity

These integrity rules define constraints on valid values that attributes can assume. A
domain is a set of valid values for a given attribute, a set of logical of conceptual
values from which one or more attributes can draw their values. For example, India
state codes might constitute the domain of attributes for employee state codes,
customer state codes, and supplier state codes. Domain characteristics include such
things as:

• Data type
• Data length
• Allowable value ranges
• Value uniqueness
• Whether a value can be null, or not.

Domain describes a valid set of values for an attribute, so that domain definitions can
help you determine whether certain data manipulation operations make sense.
There are two ways to define domains.
One way to define domains and assign them to attribute is to define the domains first,
and then to associate each attribute in your logical data model with a predefined
domain. Another way is to assign domain characteristics to each attribute and then
determine the domains by identifying certain similar groupings of domain
characteristics. The first way seems better because it involves a thorough study of
domain characteristics before assigning them to attributes. Domain definitions can be
refined as you assign them to attributes. In practice, you may have to use the second
method of defining domains due to characteristics of available repositories or CASE
tools, which may not allow you to define a domain as a separate modeling construct.

Domain definitions are important because they:

• Verify that attribute values make business sense
• Determine whether two attribute occurrences of the same value really represent

the same real-world value
• Determine whether various data manipulation operations make business sense.
A domain range characteristics for mortgage in a mortgage financing system could
prevent a data entry clerk from entering an age of five years. Even though mortgage
age and loan officer number can have the same data type, length and value, they
definitely have different meanings and should not be related to each other in any data
manipulation operations. The values 38 for age and 38 for officer number represent
two entirely unrelated values in the real world, even though numerically they are
exactly the same.

Table 1: Typical domain values

Data Characteristic Example
Data type character
 Integer
 Decimal
Data length 8 characters
 8 digits with 2 decimals
Allowable data values x>=21
 0<x<100
Data value constraints x in a set of allowable customer

numbers
Uniqueness x must be unique
Null values x cannot be null
Default value x can default the current date
 x can default to a dummy inventory

tag number (for ordered items)

It makes little sense to match records based on values of age and loan officer number,
even though it is possible. Matching customer in a customer class and customer

 16

Modeling payment in a customer transaction class makes a great deal of sense. Typical domain
characteristics that can be associated with a class attribute are shown in Table1.

Triggering Operation Integrity Rules
Triggering operation integrity rules govern insert, delete, update and retrieval
validity. These rules involve the effects of operations on other classes, or on other
attributes within class, and include domains, and insert/delete, and other attribute
within a class, and include domains and insert/delete and other attributes business
rules.

Triggering operation constraints involve:

• Attributes across multiple classes or instances

• Two or more attributes within a class

• One attribute or class and an external parameter.

Example triggering constraints include:

• An employee may only save up to three weeks time off

• A customer may not exceed a predetermined credit limit

• All customer invoices must include at least one line items

• Order dates must be current, or future dates.

Triggering operations have two components. These are:

• The event or condition that causes an operation to execute

• The action set in motion by the event or condition.

When you define triggering rules, you are concerned only with the logic of the
operations, not execution efficiency, or the particular implementation of the rules.
You will implement and tune the rule processing later when you translate the logical
database model to a physical database implementation. Here, you should note that it is
important to avoid defining processing solutions (like defining special attributes to
serve as processing flags, such as a posted indicator for invoices) until all information
requirements have been defined in the logical object model, and fully understood.

Triggering operations can be similar to referential integrity constraints, which focus
on valid deletions of parent class instances and insertions of child class instances. Ask
specific questions about each association, attribute, and class in order to elucidate
necessary rules regarding data entry and processing constraints.

Triggering operation rules:
• Define rules for all attributes that are sources for other derived attributes
• Define rules for subtypes so that when a subtype instance is deleted, the

matching super type is also deleted
• Define rules for item initiated integrity constraints.

1.7 AN OBJECT MODEL

In this last section of this unit let us examine a sales order system object model:
In this Sales Order System example, there are three methods of payment: cash, credit
Card or Check. The attribute amount is common to all the three-payment methods,
however, they have their own individual behaviors. Figure 8 shows the object model,
where the directional association in the diagram indicates the direction of navigation
from one class to the other class.

17

Object Modeling

 1

0.. n

Order

Id
Date
Delivery date& tone

Order

Id
Date
Delivery date& tone

Customer

name
address
Phone
category

Customer

Name
Address
Phone
Category

 1

1

 Payment

Amount

Order line

quantity

get sub tolar ()

 1..n

o..n

 Product

Unit Price brand
Reg. Pn.

Check

Bom ID

Check ID

Credit Card
Card No
Verification Code
Expire Date

Id valid ()

Cash

Cash Tendered

Figure 7: An object model for Sales Order System

 Check Your Progress 3

1) Explain in a few words whether the following UML class diagrams are correct
or not

Course offering Schedule

Alternate Courses

Primary Courses

Figure 8: A Class Diagram

………………………………………………………………………………………………………

………………………………………………………………………………………………………

………………………………………………………………………………………………………

2) Suppose that a computer is built out of one or more CPUs, Sound Card, and
Video. Model the system with representative classes, and draw the class
diagram
…………………………………………………………………………….

…………………………………………………………………………….

…………………………………………………………………………….

…………………………………………………………………………….

 18

Modeling 3) Suppose that Window WithScrollbar class is a subclass of Window and has a
scrollbar. Draw the class diagram (relationship and multiplicity).
………………………………………………………………………….…

………………………………………………………………………….…

……………………………………………………………………………

………………………………………………………………………….…

………………………………………………………………………….…

…………………………………………………………………………….

1.8 SUMMARY

This Unit over basic aspects of object modeling which includes discussion model
based on objects (rather than functions) will be more stable over on a time hence the
object oriented designs are more maintainable. Object do not exist in isolation from
one another. In UML, there are different types of relationship (aggregation,
composition, generalization). This Unit covers aggregation, and emphasizes that
aggregation is the has-a or whole/part relationship. In this Unit we have also seen that
generalization means extracting common properties from a collection of classes and
placing them higher in the inheritance hierarchy, in a super class. We concluded the
Unit with a discussion on integrity constraints, and by giving an object model for sales
order system.

1.9 SOLUTIONS/ANSWERS

Check Your Progress 1
1) C 2) D 3) C 4) D

Check Your Progress 2
1) A 2) 2 3) B

Check Your Progress 3
1) Incorrect: Classes are not allowed to have multiple association, unless defined

by different roles

2)

1. * 1. *

1. *

Video Card

Computer

Sound Card

Computer

Figure 9: Class Diagram

19

Object Modeling 3)

 ScrollbarWindow with Scrollbar

Window

Figure 10: Class Diagram

20

Modeling
UNIT 2 DYNAMIC MODELING

Structure Page Nos.

2.0 Introduction 20
2.1 Objectives 20
2.2 Events 20
2.3 State and State Diagram 21
2.4 Elements of a State Diagram 24
2.5 Advanced Concepts in Dynamic Modeling 25
2.6 Concurrency 26
2.7 A Dynamic Model 27
2.8 Summary 28
2.9 Solutions/Answers 29

2.0 INTRODUCTION

You must have observed that whenever something is done, some action is triggered.
From daily life you can see that when you press a bell button, a ring tone is produced.
That means some event has taken place. The dynamic model covers this aspect of the
systems.

The dynamic model shows the time-dependent behavior of the system and the
objects in it. Events can be defined as “something happened at a point of time”. The
dynamic model is important for interactive systems. The logical correctness of events
depends on the sequences of interactions, or sequence of events.

You can understand a system by first looking at its static structure, the structure of its
objects, and their relationships over time. Aspects of a system that are concerned with
time and changes are the dynamic models. Control describes the sequences of
operations that occur in response to external stimuli without consideration of what the
operations do, what they operate on, or how they are implemented.

The major dynamic modeling concepts are events, which represent external stimuli,
and states, which represent values of objects. The state diagram is a standard
computer science concept (a graphical representation of finite state machines).
Emphasis is on the use of events and states to specify control rather than as algebraic
constructs. In this Unit, we will discuss the basic concepts of dynamic modeling
which will cover events and states. We will also cover state diagram and concept of
concurrency.

2.1 OBJECTIVES
After going through this unit, you should be able to:

• explain events, and transition;
• design state diagrams;
• explain the elements of state diagram;
• use advanced concepts in dynamic modeling;
• explain, concurrency; and
• represent dynamic model of systems.

2.2 EVENTS
You can understand an event as some action oriented result, such as mouse click.
Whenever you will click on a mouse, the appropriate action takes place.

 21

Dynamic Modeling You may observe that an event has no specific time period duration. You can click
on a mouse and keep it pressed as long as you want. So, as far as events are
concerned, nothing is instantaneous. An event is simply an occurrence. An event is
actually a one way transmission of information from one object to another, but
some times it may be that an event that occurs on a single object and changes the state
of that object.

Two events can take place at the same time, one after the other, or both the events
independently of each other and occurring simultaneously. For example, like two
trains can depart at the same time for two different places, or two can depart from the
same place, but one after the other. It means that the two events can be independent
as well as dependent on each other.

Two events which are unrelated and occur at the same time are known as concurrent
events. They have no effect on each other. You will not find any particular order
between the two events, because they can occur in any order. In a distributed system,
you will notice concurrent events and activities.

An object sending an event to another object may expect a reply, but the reply will
be a separate event of the second object. So, you may see conversations between two
objects as a combination of two or more events.

Event Classes: Every event is a unique occurrence; event class is a name to indicate
common structure and behavior. Some events are simple signals, but most event
classes have attributes indicating the information they convey. For example, events
like train departs which has the attributes train number, class, city, etc. It is not
necessary that all the attributes of objects contribute to attributes of events.

Here, you must note that the time at which the event occurs is an implicit attribute
of all events.

Some events convey information in the form of data from one object to another.
Sometime it may be that some classes of events only signal that something has
occurred, while other classes of events convey data values. The data values conveyed
by an event are its attributes; it implies that the value of data objects involved in
events.

Event class name (attributes)

Sometimes event refers to event instance, or event class.

Mouse button clicked (left click, location)

Digit dialed (digit)

Phone receiver lifted.

Events include error conditions as well as normal occurrences.

Scenario and Event traces
A scenario is seen as a sequence of events that occurs during one particular
execution of a system. As far as the scope of a scenario is concerned, it varies. It may
include all events in the system, or only some events from some selected objects
involved in the event. Example of a scenario can be the historical records of executing
a system, or a thought experiment of executing a proposed system.

Now, let us discuss states, and state diagram.

2.3 STATE AND STATE DIAGRAM

The state of an object is decided by the current values associated with the attributes of
that object.

22

Modeling State
A state is a condition during the life of an object, or an interaction, during which, it
satisfies some condition, performs some action, or waits for some event. An object
remains in a state for a finite (non-instantaneous) time.

Actions are atomic and non-interruptible. A state may correspond to ongoing
activity. Such activity is expressed as a nested state machine. Alternately, ongoing
activity may be represented by a pair of actions, one that starts the activity on entry to
the state and one that terminates the activity on exit from the state. So you can see
that activities are the agents that are responsible for the change in state. Also, a state
has its duration, and most of the time, a state is associated with some continuous
activity.

You must see that a state should have initial states and final states. A transition to the
enclosing state represents a transition to the initial state. A transition to a final state
represents the completion of activity in the enclosing region. Completion of activity in
all concurrent regions represents completion of activity by the enclosing state and
triggers a “completion of activity event” on the enclosing state. Completion of the
outermost state of an object corresponds to its death.

Notation
A state is shown as a rectangle with rounded corners. It may have one or more
compartments. The compartments are all optional. They are as follows:

• Name compartment, holds the (optional) name of the state as a string. States
without names are “anonymous” and are all distinct. It is undesirable to show
the same named state twice in the same diagram.

• Initial state is shown by a solid circle.

• Final state is shown by a bull’s eye.

Creating a State Diagram
Let us consider the scenario of travelling from station A to station B by the Bus Stand.

Following is the example of a state diagram of such scenario. It represents the
normal flow. It does not show the substates for this scenario.

 At Bus Stand

From Bus Stand B

Depart

Bus Stand B Bus Stand A

Figure 1: An example of flow in a state diagram

State chart diagrams

Objects have behaviors and state. The state of an object depends on its current
activity, or condition. A state chart diagram shows the possible states of the object
and the transitions that cause a change in state.

This diagram in Figure 2 models the login part of an online banking system. Logging
in consists of entering a valid social security number and personal id number, then
submitting the information for validation.

 23

Dynamic Modeling

Figure 2: State chart diagram of login

ent to
rforms an activity. The result of that activity

determines its subsequent state.

muli,
gether with its responses and actions. Or, in other words, you can say that:

e
e receipt of outside stimuli. A state machine is

 symbols.
States may also contain sub diagrams by physical containment and tiling.

Check Your Progress 1

1) What is a state chart diagram?

……………………………………………………………………………………

……………………………………………………………………………………

2) What is a UML state diagram?

……………………………………………………………………………………

……………………………………………………………………………………

3) Draw a state diagram for a mobile phone.

……………………………………………………………………………………

……………………………………………………………………………………

Now, let us discuss the basic components of a state diagram.

Getting PIN Validating

Do/ Validate PIN no

Initial State

Guard Event

Press key [key ! = tab]

Submit

[Valid]/ Start
transaction

Rejecting

[not valid] / Display error message

Cancel / Quit

Action

Logging in can be factored into four non-overlapping states: Getting PIN,
Validating, and Rejecting. From each state comes a complete set of transitions that

etermine the subsequent state.

ts
ns are written beside the arrows. Our diagram has

lf-transition, on Getting PIN.

y to start the action. Final states are also
ummy states that terminate the action.

d

States are rounded rectangles. Transitions are arrows from one state to another. Even
or conditions that trigger transitio
se

The initial state (black circle) is a dumm
d

The action that occurs as a result of an event or condition is expressed in the form
action. While in its Validating state, the object does not wait for an outside ev
trigger a transition. Instead, it pe

Now, you can see that a statechart diagram shows the sequences of states that an
object or an interaction goes through during its life in response to received sti
to

The state machine is a graph of states and transitions that describes the respons
of an object of a given class to th
attached to a class or a method.

A statechart diagram represents a state machine. The states are represented by state
symbols, and the transitions are represented by arrows connecting the state

24

Modeling
2.4 ELEMENTS OF A STATE DIAGRAM

We have seen different symbols used their meaning is a state diagram. Table1also
explain about different State diagrams symbols.

Table 1: State Diagram Symbols

 Elements and its Description Symbol

Initial State: This shows the starting point or first activity
of the flow. It is denoted by a solid circle. This is also
called a pseudo state, where the state has no variables
describing its further and no activities, to be done.

State: Represents the state of an object at an instant of
time. In a state diagram, there will be multiples of such
symbols, one for each state of the object, denoted by a
rectangle with rounded corners and compartments (such as
a class with rounded corners to denote an object).

Transition: An arrow indicating the object to transition
from one state to the other. The actual trigger event and
action causing the transition are written beside the arrow,
separated by a slash. Transitions that occur because the
state has completed an activity are called “triggerless”
transitions.

History States: A flow may require that the object go into
a trance, or wait state, and on the occurrence of a certain
event, go back to the state it was in when it went into a
wait state — its last active state. This is shown in a State
diagram with the help of a letter H enclosed within a
circle.

Event and Action: A trigger that causes a transition to
occur is called as an event or action. Every transition need
not occur due to the occurrence of an event or action
directly related to the state that transitioned from one state
to another. As described above, an event/action is written
above a transition that it causes.

Signal: When an event causes a message/trigger to be
sent to a state that causes the transition; then, that message
sent by the event is called a signal.

Final State: The end of the state diagram is shown by a
bull’s eye symbol, also called a final state. A final state is
another example of a pseudo state because it does not
have any variable or action described.

Event / Action

H

Event / Action

Event / Action

<<Signal>>
Event/Action

Note: Changes in the system that occur, such as a background thread while the main
process is running, are called “substates”. Even though it affects the main state, a
substate is not shown as a part of the main state. Hence, it is depicted as contained
within the main state flow.

 25

Dynamic Modeling

2.5 ADVANCED CONCEPTS IN DYNAMIC
MODELING

Now let us look into advanced concepts in Dynamic Modeling. Entry and exit actions
are part of every dynamic model. Let us see how they are performed.

Entry and Exit Actions
The following special actions have the same form, but represent reserved words that
cannot be used for event names:

‘Entry’ ‘/’ action-expression: An atomic action performed on entry to the state.
‘Exit’ ‘/’ action-expression: An atomic action performed on exit from the state.

Action expressions may use attributes and links of the owning object and parameters
of incoming transitions (if they appear on all incoming transitions).

The following keyword represents the invocation of a nested state machine:
‘do’ ‘/’ machine-name (argument-list).

The machine-name must be the name of a state machine that has an initial and final
state. If the nested machine has parameters, then the argument list must match
correctly. When this state is entered, after any entry action, then execution of the
nested state machine begins with its initial state.

Example Typing Password

Entry/set echo invisible
Exit/ set echo normal
Character / handle character
Help / display help

Figure 3: Entry-exit Action

The internal transition compartment holds a list of internal actions or activities
performed in response to events received while the object is in the state, without
changing state.

The format to represent this is:

event-name argument-list ‘[‘guard-condition’]’ ‘/’ action-expression

Each event name ‘or pseudo-event name’ may appear at most once in a single state.

You can see what happens when an event has to occur after the completion of some
event or action, the event or action is called the guard condition. The transition takes
place after the guard condition occurs. This guard condition/event/action is depicted
by square brackets around the description of the event/action (in other words, in the
form of a Boolean expression).

 Check Your Progress 2

1) What is a guard condition? Explain it with an example.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What are two special events?
……………………………………………………………………………………

.…………………………………………………………………………………..

……………………………………………………………………………………

26

Modeling 3) What is a self-transition?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

Now, let us discuss the concept of concurrent object.

2.6 CONCURRENCY

You are already familiar with the term concurrent lines, which goes without affecting
other operations. Similarly, when in a system objects can change state independently,
they are termed concurrent objects.

In a dynamic model, some systems are described as a set of concurrent objects, each
with its own state and state diagram.

An expansion of a state into concurrent substates is shown by tiling the graphic
region of the state using dashed lines to divide it into subregions. Each subregion is a
concurrent substate. Each subregion may have an optional name, and must contain a
nested state diagram with disjoined states.

Composite States
Now you can say that a state can be decomposed using and-relationships into
concurrent substates or using or-relationships into mutually exclusive disjoint
substates. A given state may only be refined in one of these two ways. Its substates
may be refined in the same way or the other way.

A newly-created object starts in its initial state. The event that creates the object may
be used to trigger a transition from the initial state symbol. An object that transitions
to its outermost final state ceases to exist.

An expansion of a state shows its fine structure. In addition to the (optional) name
and internal transition compartments, the state may have an additional compartment
that contains a region holding a nested diagram. For convenience and appearance, the
text compartments may be shrunk horizontally within the graphic region.

Sequential Substates

Dial, Validate

Partial Dial
Entry / member append (n)

Dial Number

Entry / start dial
tone exit/ stop
dial tone

Digit (n)

Figure 4: States Sequence

In Figure 4, you can see that dial a number process state is further divided into its
sequential substrates such as, when it is entering number state then the state can be
named as “Partial Dial” in which the user is still entering the number the action is
“append in digits” then next state will validate the number and so on.

A state diagram for an assembly is a collection of state diagrams, one for each
component. Aggregation means concurrency. Aggregation is the “and-
relationship”, you will see, it is the combined states of all component diagrams. For
example, the state of a Car as an aggregation of component states: the Ignition,
Transmission, Accelerator, and Brake. Each component state also has states. The state

 27

Dynamic Modeling of the car includes one substate from each component. Each component undergoes
transititions in parallel with all others.

Semantics
An event is a noteworthy occurrence. For practical purposes in state diagrams, it is
an occurrence that may trigger a state transition. Events may be of several kinds
(not necessarily mutually exclusive): The event occurs whenever the value of the
expression changes from false to true. Note that this is different from a guard
condition: A guard condition is evaluated once whenever its event fires; if it is false
then the transition does not occur and the event is lost. Guarded transitions for one
object can depend on another object being in a given state.

2.7 A DYNAMIC MODEL

Now you are familiar with events and their occurring time. The dynamic model
describes those aspects of the system concerned with the sequencing of operations
and time - events that cause state changes, sequences of events, states that define the
context for events and the organization of events and states. The dynamic model
captures control information without regard for what the operations act on or how
they are implemented.

The dynamic model is represented graphically by state diagrams. A state corresponds
to the interval between two events received by an object, and describes the “value” of
the object for that time period. A state is an abstraction of an object’s attribute
values and links, where sets of values are grouped together into a state according to
properties that affect the general behavior of the object. Each state diagram shows the
state and event sequences permitted in a system for one object class. State diagrams
also refer to other models: actions correspond to functions in the functional model;
events correspond to operations on objects in the object model.

The state diagram should adhere to OMT’s notation and exploit the capabilities of
OMT, such as transition guards, actions and activities, nesting (state and event
generalization), and concurrency.

Here is the transition diagram for a digital watch.

Press
Button
Change
Minutes

Change
Seconds

Press
Button

Mode

Press
Button/change
Hours

Mode Button
Set Hours

Do/Display Hours

Display

Do/Display Current Time

Set Minutes

Do/Display Minutes

Button

Set seconds

Do/Display Seconds

Mode Button

Figure 5: State Transition diagram for digital watch

In Figure 5, you can see that the state diagram of a digital watch is given. Where user
wants to set Hours set Minutes and followed by setting seconds.

28

Modeling Check Your Progress 3

1) Give a Concurrent substates diagram for classroom and exam held.

…………………………………………………………………………….

…………………………………………………………………………….

…………………………………………………………………………….

2) Describe Dynamic Model.

…………………………………………………………………………….

…………………………………………………………………………….

3) Give a sample of a Dynamic Model.

…………………………………………………………………………….

…………………………………………………………………………….

……………………………………………………………………………

…………………………………………………………………………….

4) Show, with an example, that relatively high-level transitions result when the
system or program is stimulated by outside events.

…………………………………………………………………………….

…………………………………………………………………………….

…………………………………………………………………………….

…………………………………………………………………………….

2.8 SUMMARY

The dynamic model is the model which represents the control information: the
sequence of events, states and operations that occur within a system of objects. It has
scenarios to occur with meaningful constraints.

An event is triggered by an instantaneous action. One kind of action is sending an
event to another object. External event also known as a system event is caused by
something outside our system boundary. Internal event is caused by something inside
our system boundary.

States may be “nested.” A nested state usually indicates a functional decomposition
within the “super” state. The term macro-state is often used for the super state. The
macro-state may be composed of multiple micro-states.

The basic notion is that the system is always in one state, and never in more than one
state (at any given level). The system remains in that state until a transition is
triggered by an external event. Transitions take no time to occur. There is no time in
which the system is not in one of the defined states.

State diagrams must be created for state-dependent objects with complex behavior
like Use Cases, Stateful session, Systems, Windows, Controllers, Transactions,
devices, and role mutators.

Actions are associated with transitions and are considered to be processes that occur
quickly, and are not interrupted. The syntax for a transition label has three parts, all of
which are optional: Event [Guard] / Action.

 29

Dynamic Modeling

2.9 SOLUTIONS/ANSWERS

Check Your Progress 1
1) State diagrams (State Chart Diagram) describe all the possible states that a

particular object can get into, and how the object’s state changes as result of
events that reach the object. It states all possible states and transitions.

2) The UML state diagram illustrates the events and states of an object and the
behavior of an object in reaction to an event.

3)

Dialed digit (n)

Talking
Ringing

Do/ Play ring tone

Invalid number

busy
Busy

Do / Play message

Connecting

Invalid

Do / Play message

After 20 Sec

Dialed digit
valid/connect

Dialing

After 20 Sec
Time out

Do/ Play message

Dial Dight

Press Buttons

Figure 6: State Diagram for a Mobile

Check Your Progress 2

1) The guard-condition is a Boolean expression written in terms of parameters of
the triggering event and attributes and links of the object that owns the state
machine. The guard condition may also involve tests of concurrent states of the
current machine (or explicitly designated states of some reachable object); for
example, “in State1” or “not in State2”. State names may be fully qualified by
the nested states that contain them, yielding path names of the form ''State1:
State2::State3''; this may be used in case the same state name occurs in different
composite state regions of the overall machine.

2) There are two special events “entry” and “exit”. Any action that is marked as
linked to the entry event is executed whenever the given state is entered via
transition. The action associated with the exit event is executed whenever the
state is left via transition.

3) If there is a transition that goes back to the same state, it is called “self-
transition.” With a trigger action the exit action would be executed first, then
the transition’s action and finally the entry action. If the state has an associated
activity as well, that activity is executed after the entry action.

30

Check Your Progress 3 Modeling
1)

Taking Class

 Incomplete

 Minor 2

Passed

Passed

Minor 1
 Minor 1

Minor 2

 Passed

Term ProjectTerm
Minor
project Done

PassMajor

exam
passed

Failed

Figure 7: Concurrent Substate diagram

In Figure 7 of concurrent substrates have been taken. After passing Minor 1 test you
can give Minor 2 test. Term minor project of that semester minor should be done
before Major exam of that semester.

2) The dynamic model specifies allowable sequences of changes to objects from
the object model. It includes event trace diagrams describing scenarios. An
event is an external stimulus from one object to another, which occurs at a
particular point in time. An event is a one-way transmission of information from
one object to another. A scenario is a sequence of events that occurs during one
particular execution of a system. Each basic execution of the system should be
represented as a scenario.

3) Dynamic model for car:

Accelerator and Brake Applies Accelerator or Brake
Accelerator Applies Accelerator
Brake Applies Brake
off Put off the car
on Put on the car
off
on
press acc
rel acc
press brake
rel brake

4) In this diagram, you can observe if that initial state is state X if event Z occurs,
then state X is terminated, and state Y is entered.

Z

Y

X
State (Event dependency)

Figure 8: State event dependency

 31

Functional Modeling
UNIT 3 FUNCTIONAL MODELING

Structure Page Nos.

3.0 Introduction 31
3.1 Objectives 31
3.2 Functional Models 32
3.3 Data Flow Diagrams 33
3.4 Features of a DFD 33

3.4.1 Processes
3.4.2 Data Flows
3.4.3 Actors
3.4.4 Data Stores
3.4.5 Constraints
3.4.6 Control Flows

3.5 Design Flaws in DFD 37
3.6 A Sample Functional Model 38
3.7 Relation of Functional to Object and Dynamic Model 42
3.8 Summary 44
3.9 Solutions / Answers 45

3.0 INTRODUCTION

As discussed in the previous Unit of this Course “the dynamic model represents
control information: the sequences of events, states, and operations that occur within
a system of objects”. The dynamic model is a pattern that specifies possible scenarios
that may occur. An event is a signal that something has happened. A state represents
the interval between events, and specifies the context in which events are interpreted.
An action is an instantaneous operation in response to an event.

The functional modeling is the third, and final phase of the OMT model. The
functional modeling is a complex modeling. It describes how the output values in a
computation are derived from input values. The functional model specifies what
happens, the dynamic model specifies when it happens, and the object model
describes what it happens, and the object model describes what happens to an object.
The functional model is consist of multiple data flow diagrams, which show the
flow of values from input to output through operations and internal data stores. It also
includes constraints among values within an object model.

In this Unit you will learn functional modeling concepts and data flow diagrams. Data
flow diagrams do not show control or object structure information; these belong to the
dynamic and object models. In this Unit in our discussion will follow the traditional
form of the data flow diagram, with which you are familiar.

3.1 OBJECTIVES

After going through this unit, you should be able to:

• describe the Function Model;

• explain the concept of DFD;

• implement dataflow in the functional model;

• describe features of the data flow diagram;

• explain limitations in the design of the Data Flow Diagram, and

• relate the Object Model, Dynamic Model, and Functional Model.

 32

Modeling

3.2 FUNCTIONAL MODELS

Let us start our discussion by answering the question “what is a functional model?”

The functional model is the third leg of the OMT methodology in addition to the
Object Model and Dynamic Model. “The functional model specifies the results of a
computation specifying how or when they are computed”. The functional model
specifies the meaning of the operations in the object model and the actions in the
dynamic model, as well as any constraints in the object model. Non-interactive
programs, such as compilers, have a trivial dynamic model; the purpose of a compiler
is to compute a function. The functional model is the main model for such programs,
although the object model is important for any problem with nontrivial data structures.
Many interactive programs also have a significant functional model. By contrast,
databases often have a trivial functional model, since their purpose is to store and
organize data, not to transform it.

For example, spreadsheet is a kind of functional model. In many cases, the values in
the spreadsheet are trivial and cannot be structured further. The only interesting object
structure in the spreadsheet is the cell. The aim of the spreadsheet is to specify values
in terms of other values.

Let us take the case of a compiler. A compiler is almost a pure computation. The
input for a compiler is the text of a program in a particular language; the output is an
object file that implements the program in another language often the machine
language of a particular computer. Here, the mechanics of compilation are not
concerned with the functional model. Now, we will discuss the data flow diagram. It
is very helpful in visualizing the flow of data in the system, and to show the
involvement of different processes at different levels.

3.3 DATA FLOW DIAGRAMS

Here, we will discuss data flow diagram and their uses in a Functional Model. As you
know, the functional model consists of multiple data flow diagrams which specify
the meanings, of operations and constraints. A data flow diagram (DFD) shows the
functional relationships of the values computed by a system, including input values,
output values, and internal data stores. “A data flow diagram is a graph which shows
the flow of data values from their sources in objects through processes that
transform them to their destinations in other objects”. DFDs do not show control
information, such as the time at which processes are executed, or decisions among
alternate data paths. This type of information belongs to the dynamic model. Also, the
arrangement values into object are shown by the object model, but not by the data
flow diagram.

A data flow diagram contains processes which transform data, data flows which
move data, actor objects which produce and consume data, and data store objects
that store data passively. Figure 1 shows a data flow diagram for the display of an
icon on a windowing system. Here in this figure, the icon name and location are inputs
to the diagram from an unspecified source. The icon is expanded to vectors in the
application coordinate system using existing icon definitions. The vectors are clipped
to the size of the window, then offset by the location of the window on the screen, to
obtain vectors in the screen coordinate system. Finally, the vectors are converted to
pixel operations that are sent to the screen buffer for display. The data flow diagram
represents the sequence of transformations performed, as well as the external values
and objects that affect the computation process.

Now, let us turn to the basic feature of DFD.

 33

Functional Modeling
3.4 FEATURES OF A DATA FLOW DIAGRAM

The DFD has many features. It shows the computation of values in different states.
The building blocks and features of DFD are:

3.4.1 Processes
“The term process means all the computation activities that are involved from the
input phase to the output phase”. Each process contains a fixed number of input and
output data arrows. These arrows carry a value of a given type. A process transforms
data values. The lowest-level processes are pure functions without side effects.

 Screen Buffer

 size

Application
vector list

Window
vector list

Screen vector

 Pixel
operations

Convert to
pixels

Location

Icon name

Icon definitions

Offset
vectors

Window

Clip vectors
Expand into

vector

Figure 1: Data flow diagram for windowed graphics display

An entire data flow graph is a highlevel process. A process may have side effects if it
contains non-functional components, such as data stores or external objects. The
functional model does not uniquely specify the results of a process with side effects.
The functional model only indicates the possible functional paths; it does not show
which path will actually occur. The results of such a process depend on the behavior
of the system, as specified by the dynamic model. Some of the examples of non-
functional processes are reading and writing files, a voice recognition algorithm
that learns from experience, and the display of images within a workstation
windowing system.

A process is represented with the ellipse symbol and the name of process is written in
it. Each process has a fixed number of input and output data arrows, each of which
carries a value of a given type. The inputs and outputs can be labeled to show their
role in the computation. In Figure 2, two processes are shown. Here, you should note
that a process can have more than one output. The display icon process represents the
entire data flow diagram of Figure1 at a higher level of abstraction.

location

Icon name Pixel operations
display

icon

quotient

remainder division

dividend

Integer
division

Figure 2: Processes

The diagram of processes shows only the pattern of inputs and outputs. The
computation of output values from input values must also be specified. A high-level
process can be expanded into an entire data flow diagram such as a subroutine which
can be expanded into lower-level subroutine. Recursion processes must be stopped in
a data flow diagram. The atomic processes must be described directly, in natural

 34

Modeling language, mathematical equations, or by some other means. For example, integer
division could be defined mathematically and “display icon” would be defined in
terms of Figure 1. The atomic processes are trivial and simply access a value from an
object.

3.4.2 Data Flows

The term data flow literally means flow of data. A data flow connects the output of an
object or process to the input of another object or process. It represents an
intermediate data value within a computation. Here, you should note that the value is
not changed by the data flow.

A data flow is represented with the symbol arrow, and is used to connect the producer
and the consumer of the data value. The arrow is labeled with a description of the
data, usually, its name or type. The same value can be sent to several places and this is
indicated by a fork with several arrows emerging from it. The output arrows are
unlabeled because they represent the same value as the input. Some data flows are
shown in Figure 3 below.

number

number

number

address

stress
address

 ZIP
 code

state

city

Figure 3: Data flows to copy a value and split an aggregate value

Sometimes, an aggregate data value is split into its components, each of which goes to
a different process. This is shown by a fork in the path in which each outgoing arrow
is labeled with the name of its component. The combination of several components
into an aggregate value is just the opposite of it.

Each data flow represents a value at some point in the computation. The data flows
internal to the diagram represent intermediate values within a computation and do not
necessarily have any significance in the real world.

Flows on the boundary of a data flow diagram are its inputs and outputs. These flows
may be unconnected, or they may be connected to objects. The inputs in Figure 3 are
the number and address of the location; their sources must be specified in the larger
context in which the diagram is used.
3.4.3 Actors
The term actor means an object which can perform actions. It is drawn as a
rectangle to show that it is an object. An actor is an active object that drives the data
flow graph by producing or consuming values. Actors are attached to the inputs and
outputs of a data flow graph. In a sense, the actors lie on the boundary of the data flow
graph, but terminate the flow of data as sources and sinks of data, and so are
sometimes called terminators. Examples of actors are the user of a program, a
thermostat, and a motor under computer control. The actions of the actors are outside
the scope of the data flow diagram, but should be part of the dynamic model.

3.4.4 Data Stores
The term data store literally means the place where data is stored. It is a passive
object within a data flow diagram that stores data for later access. Unlike an actor, a
data store does not generate any operations on its own, but merely responds to
requests to store and to access data. A data store allows values to be accessed in a
different order than they are generated. Aggregate data stores, such as lists and tables,

 35

Functional Modeling provide accesses to data by insertion order or by index keys. Some of the examples of
data stores are the database of airline seat reservations, a bank account, and a list of
temperature readings over the past day.

A data store is represented by a pair of parallel lines containing the name of the store.
Input arrows indicate information or operations that modify the stored data. Some of
the operations which we can perform are adding elements, modifying values, or
deleting elements. Output arrows indicate information retrieved from the store. This
includes retrieving at the values, or some part of it.

 Max temperature

Account

Withdraw

—Customer

balance
temperature

Max temperature
Readings

4 (a) 4 (b)

find
weight

Atomic weights

Atomic weights

 element

Periodic
table

Item name

cost

find
cost

cost

Price list

Item name

4 (c) 4 (d)

Figure 4: Data stores

Figure 4 shows a data stores for temperature readings. Every hour a new temperature
reading enters the store. At the end of the day, the maximum and minimum readings
are retrieved from the store. The data store permits many pieces of data to be
accumulated so that the data can be used later on.

In Figure 4b data store for a bank account is given. The double-headed arrow
indicates that a balance is both an input and an output of the subtraction operation.
This can be represented with two separate arrows. Accessing and updating of the
value in a data store is a common operation.

In Figure 4c, a price list for items is shown. Input to the store consists of pairs of item
name and cost values. Later, an item is given, and the corresponding cost is found.
The unlabeled arrow from the data store to the process indicates that the entire price
list is an input to the selection operation.

To find the atomic weight of an element from a periodic table we can use a data flow
diagram. This data flow diagram is represented in Figure 4d. Obviously, the
properties of chemical elements are constant and not a variable of the program. It is
convenient to represent the operation as a simple access of a constant data store
object. Such a data store has no inputs.

Take the case that both actors and data stores can be represented as objects. We
distinguish them because their behavior and usage is generally different, although in
an object-oriented language they might both be implemented as objects. On the other
hand, a data store might be implemented as a file and an actor as an external device.
Some data flows are also objects, although in many cases they are pure values, such as
integers, which lack individual identity.

 36

Modeling An object as a single value and as a data store containing many values have
different views. In Figure 5, the customer name selects an account from the bank. The
result of this operation is the account object itself, which is then used as a data store in
the update operation. A data flow that generates an object used as the target of another
operation is represented by a hollow triangle at the end of the data flow. In contrast,
the update operation modifies the balance in the account object, as shown by the small
arrowhead. The hollow triangle represents a data flow value that subsequently is
treated as an object.

Bank select
accounts

Customer update

Accounts

Request

name
balance

Figure 5: Selection with an object as result

The data flow diagram given in Figure 6 represents the creation of a new account in a
bank. The result of the create account process is a new account, which is stored in the
bank. The customer’s name and deposit are stored in the account. The account number
from the new account is given to the customer. In this example, the account object is
viewed both as a data value and as a data store.

 name

account number

Customer

Account

Account

Bank
Create
account

deposit

Figure 6: Creation of a new object

3.4.5 Constraints

A constraint shows the relationship between two objects at the same time, or
between different values of the some object at different times. For example, in
coordinate geometry, the location of a point can be obtained by finding the x and y
coordinates, and the scale of these two abscissas can be the same or different.

Constraints can appear in each kind of model. Object constraints describe where
some objects depend entirely or partially on other objects. Dynamic constraints
represent relationships among the states or events of different objects. Similarly, the
functional constraints shows the restrictions on operations, such as the scaling
transformation.

A constraint between values of an object over time is often called an invariant. For
example, conservation laws in physics are invariants: the total energy, or charge, or
angular momentum of a system remains constant. Invariants are useful in specifying
the behavior of operations.

3.4.6 Control Flows
A control flow is a Boolean value that affects whether a process is evaluated. The
control flow is not an input value to the process itself. It is shown by a dotted line
from a process producing a Boolean value to the process being controlled. The use of
control flow is shown in the Figure 7. This figure shows the withdrawal of money
from a bank account. The customer enters a password and an account. The withdrawal

 37

Functional Modeling was made after successfully verifying the password. The update process also can be
explained by using a similar control flow to guard against overdrafts.

 ok

Account

Password

Password

amount

Cash

Coded password

UpdateCustomer

 verify

Figure 7: Control flow

 Check Your Progress 1

1) Explain Functional Mode with the help of an example.
……………………………………………………………………………..

……………………………………………………………………………..

……………………………………………………………………………..

2) i) What is a Data Flow Diagram?
 ii) What is the State Diagram?

…………………………………………………………………………….

…………………………………………………………………………….

…………………………………………………………………………….

…………………………………………………………………………….

3) Explain the following.

i) Process
ii) Data Flows
iii) Actor
iv) Data Stores
……………………………………………………………………………..

.…………………………………………………………………………….

…………….………………………………………………………………

……………………………………………………………………………..

Now we will discuss some limit actions of DFD.

Although the data flow diagram is very helpful in describing the functional model of
an object. But similar to other models such as object model and dynamic model it
also have some limitations.

3.5 DESIGN FLAWS IN DFD

Some of the common limitations of the data flow diagram are as follow:

• The Functional Model does not specify when values are computed.

 38

Modeling • The Functional Model does not specify how often values of an object are
computed.

• The Functional Model does not specify why the values of an object are changes.

• A Data Flow Diagram contain different symbols to represent different objects
and actions, and is very difficult to prepare.

• The Data Flow Diagram for some lengthy problems becomes very complex to
prepare as well as to remember.

After a detailed discussion of the various components of functions model, now, you
are able to understand the complete sample functional model. In the next section, we
describe the functional model for a flight simulator.

3.6 A SAMPLE FUNCTIONAL MODEL

The flight simulator is responsible for handling the pilot input controls, computing the
motion of the airplane, computing and displaying the outside view from the cockpit
window, and displaying the cockpit gauges. The simulator is intended to be an
accurate, but simplified model of flying an airplane, ignoring some of the smaller
effects and making some simplifying assumptions. For example, we ignore the rudder,
under the assumption that it is held so as to keep the plane pointing in the direction of
motion. In Figure 6, the top-level data flow diagram for the flight simulator is
shown. There are two input actors; the Pilot, who operates the airplane controls, and
the weather, which varies according to some specified pattern. There is one output
actor the Screen, which displays the pilot’s view.

There are two read-only data stores: The Terrain database, which specifies the
geometry of the surrounding terrain as a set of colored polygonal surfaces, and the
Cockpit database, which specifies the shape and location of the cockpit view port
and the locations of the various gauges. There are three internal data stores which are
Spatial parameters, which holds the 3-D position, velocity, orientation, and rotation of
the plane; Fuel, which holds the amount of fuel remaining; and Weight, which holds
the total weight of the plane. The initialization of the internal data stores is necessary
but is not shown on the data flow diagram.

We can divide the processes given in DFD into three kinds, which are handling
controls, motion computation, and display generation. The control handling
processes are adjust controls, which transforms the position of the pilot’s controls
(such as joysticks) into positions of the airplane control surfaces and engine speed;
consume fuel, which computes fuel consumption as a function of engine speed; and
compute weight, which computes the weight of the airplane as the sum of the base
weight and the weight of the remaining fuel. Process adjust controls is expanded in
Figure 7 where it can be seen as comprising three distinct controls; the elevator, the
ailerons, and the throttle. There is no need to expand these processes further, as they
can be described by input-output functions easily.

The motion computation processes are compute forces, which computes the various
forces and torques on the plane and sums them to determine the net acceleration and
the rotational torques, and integrate motion, which integrates the differential equations
of motion. Process compute forces incorporates both geometrical and aeronautical
computations. It is expanded in Figure 8. Net force is computed as the vector sum of
drag, lift, thrust, and weight.

 39

Functional Modeling

 Gauge layout

 Background image
Display
cockpit

Outline

Color

Cockpit database

Terrain database

Geometry

Screen

Gauge
image

Display
view

Position orientation

Transform
view

Spatial parameters

Altitude, velocity,
orientation,
rotation

Display
gauges

Fuel

Compute
weight

Fuel

Consume
fuel

Control s

Pilot
Weather

Wind velocity, pressure, temperature

Acceleration torque

Control
surfaces,
engine speed

Integrate
motion

Compute
process

Adjust
controls

Engine speed

Figure 8: Functional model of flight simulator

These forces in turn depend on intermediate parameters, such as airspeed, angle of
attack, and air density. The aerodynamic calculations must be made relative to the air
mass, so the wind velocity is subtracted from the plane’s velocity to give the airspeed
relative to the air mass.

Engine speed

Elevator angle

Aileron angle

Adjust
elevator

Adjust
elevator

Adjust
elevator

Read value

Read value

Read value

Stuck extension

Throttle

Pilot
Stuck angle

Figure 9: Expansion of adjust controls process

 40

Modeling
orientation

Wind velocity Compute

relative
motion

 Orientation

Relative orientation air

 climb
angle

Compute
angle

-

 Temperature

Pressure Compute

density

Altitude

air density

Roll rate

 Compute
roll torqueAileron angle

lift

Compute
lift

 Elevator angle Compute

drag

Compute
roll torque

Pitch rate

 Engine speed drag

thrust

 Compute
thrust

Vector
sum

Figure 10: Expansion of compute forces processes

Air density is also computed and used in subsequent processes. The intermediate
parameters are computed in terms of data store parameters, such as airplane velocity,
orientation, rotation rates, roll rate, pitch rate, and altitude, obtained from spatial
parameters; wind velocity, temperature, and pressure, obtained from Weather;
weight, obtained from Weight; and in terms of output data flows from other
processes, such as elevator angle, aileron angle, and engine speed, obtained

 41

Functional Modeling

Orientatio

Projected
polygon (2D)

Cockpit
database Display

compas

Display
altimeter

Display
airspeed

Display
fuel

Screen

Airspeed

Fuel

Spatial Parameters

Plane-centered
polygon (3D)

Plane-centered
polygon (3D)

Subtract
vectors

Subtract
vectors

Position
Subtract
vectors

Terrain database

Transform view

Cockpit
database

Projected polygon (2D)

Viewport outline

color

Terrain image

Screen

Clipped polygon (2D)

Draw
polygon

Clip polygon
to Viewport

Display view process

Terrain
database

Display gauges process

Figure 11: Expansion of display processes

from process adjust controls. The internal processes, such as compute drag, compute
lift and compute density, would be specified by aeronautical formulas and look-up
tables for the specific airplane. For example, computer lift is specified by the equation
L=C (a) SpV2/2, where L is lift, a is the angle of attack, S is the wing area, P is the air
density, V is the airspeed, and C is the coefficient of lift as a function of angle of
attack, specified by a table for the particular kind of wing. Process integrate motion is
the solution to the differential equations of motion.

 42

Modeling The display processes are transform view, display view, display gauges, and display
cockpit. These processes convert the airplane parameters and terrain into a simulated
view on the screen. They are expanded on Figure 9. Process transform view
transforms the coordinates of a set of polygons in the Terrain database into the pilot’s
coordinate system, by first offsetting them by the plane’s position, rotating the
polygons by the plane’s orientation, and then transforming the polygons’ perspective
onto the viewing plane to produce a 2-D image in the pilot’s eye view. The position
and orientation of the plane are input parameters. Process display view clips the image
of the transformed polygons to remain within the output of the cockpit view port,
whose shape is specified in a Cockpit database. The clipped 2-D polygons are drawn
on the screen using the colors specified in the Terrain database. Process display
gauges displays various airplane parameters as gauges, using locations specified in the
cockpit database. Process display cockpit, displays a fixed image of the stationary
parts of the cockpit, and need not be expanded. You must have observed in this
example, that the functional model does not specify when, why, and how often values
are computed.

 Check Your Progress 2

1) Explain the use of constraints in functional model with suitable example.
…………………………………………………………………………….

…………………………………………………………………………….

2) Take any object from your surrounding environment and describe, it by making
a complete functional model of it, using data flow diagrams.
…………………………………………………………………………….

…………………………………………………………………………….

3) Prepare a data flow diagram for computing the volume and surface area of a
cylinder. Inputs are the height and radius of the cylinder. Outputs are the
volume and surface area of the cylinder. Discuss several ways of implementing
the data flow diagram.
…………………………………………………………………………….

…………………………………………………………………………….

3.7 RELATION OF FUNCTIONAL TO OBJECT
AND DYNAMIC MODEL

Let us now discuss the relationship between the Object Model, Dynamic Model, and
Functional Model. The functional model shows what has to be done by a system.
The leaf processes are the operations on objects. The object model shows the “doers”
of the objects. Each process is implemented by performing a method on some object.
The dynamic model shows the sequences in which the operations are performed.
Each sequence is implemented as a sequence, loop, or alternation of statements
within some method. The three models come together in the implementation of
methods. The functional model is a guide to the methods.

The processes in the functional model correspond to operations in the object model.
Often, there is a direct correspondence between each level. A top level process
corresponds to an operation on a complex object, and lower level processes
correspond to operations on more basic objects that are part of the complex object or
that implement it. Sometimes, one process corresponds to several operations, and one
operation corresponds to several processes.

Processes in the functional model show objects that are related by function. Often, one
of the inputs to a process can be identified as the target object, with the rest being

 43

Functional Modeling parameters to the operations. The target object is a client of the other objects because
it uses them in performing the operations. The target knows about the clients, but the
clients do not necessarily know about the target. The target object class is dependent
on the argument classes for its operations. The client-supplier relationship establishes
implementation dependencies among classes; the clients are implemented in terms of
suppliers class, and are therefore dependent on the supplier classes.

A process is usually implemented as a method. If the same class of object is an input
and an output, then the object is usually the target, and the other inputs are arguments.
If the output of the process is a data store, the data store is the target. If an input of the
process is a data store, the data store is the target. Frequently, a process with an input
from or output to a data store corresponds to two methods, one of them being an
implicit selection or update of the data store. If an input or output is an actor, then it
is the target. If an input is an object and an output is a part of the object or a neighbor
of the object in the object model, then the object is the target. If an output object is
created out of input parts, then the process represents a class method. If none of these
rules apply, then the target is often implicit and is not one of the inputs or outputs.
Often the target of a process is the target of the entire subdiagram. For example, in
Figure10 the target of compute forces is actually the airplane itself. Data stores weight
and spatial parameters are simply components of the airplane that are accessed during
the process.

Actors are explicit objects in the object model. Data flows to or from actors represent
operations on or by the objects. The data flow values are the arguments or results of
the operations. Because actors are self-motivated objects, the functional model is not
sufficient to indicate when they act. The dynamic model for an actor object specifies
when it acts.

Data stores are also objects in the object model, or at least fragments of objects, such
as attributes. Each flow into a data store is an update operation. Each flow out of a
data store is a query operation, with no side effects on the data store object. Data
stores are passive objects that respond to queries and updates, so the dynamic model
of the data store is irrelevant to its behavior. A dynamic model of the actors in a
diagram is necessary to determine the order of operations.

Data flows are values in the object model. Many data flows are simply pure values,
such as numbers, strings, or lists of pure values. Pure values can be modeled as
classes and implemented as objects in most languages. A pure value is not a container
whose value can change, but just the value itself. A pure value, therefore, has no state
and no dynamic model. Operations on pure values yield other pure values and have no
side effects. Arithmetic operations are examples of such operations.

Relative to the Functional Model: The object model shows the structure of the
actors, data stores, and flows in the functional model. The dynamic model shows the
sequence in which processes are performed.

Relative to the Object Model: The functional model shows the operations on the
classes, and the arguments of each operation as well. The dynamic model shows the
status of each object and the operations that are performed as it receives events and
changes state.

Relative to the Dynamic Model: The functional model shows the definitions of the
leaf actions and activities that are undefined with the dynamic mode. The object
model shows changes of state during the operation.

Operations can be specified by a variety of means, including mathematical equations,
tables, and constraints between the inputs and outputs. An operation can be specified
by pseudopodia, but a specification does not imply a particular implementation; it may
be implemented by a different algorithm that yields equivalent results. Operations
have signatures that specify their external interface and transformations that specify
their effects. Queries are operations without side effects; they can be implemented as
pure functions. Actions are operations with side effects and duration; they must be

 44

Modeling implemented as tasks. Operations can be attached to classes within the object model
and implemented as methods. Constraints specify additional relationships that must be
maintained between values in the object model.

 Check Your Progress 3
1) Describe the meaning of the data flow diagram in Figure 12.

Ambient Temperature

Thermal Parameters

Speed

Electrical Torque

Electrical parameters

Voltage, Frequency

Losses
Temperature

Air flow

Thermal
analysis

Load characteristics

Fan
Analysis

Mechanical
Analysis

Electrical
analysis

Figure 12: Data flow diagram of motor analysis

……………………………………………………………………………..

……………………………………………………………………………..

2) Prepare a data flow diagram for computing the mean of a sequence of input
values. A separate control input is provided to reset the computation. Each time
a new value is input, the mean of all values input since the last reset command
should be output. Since you have no way of knowing how many values will be
processed between resets, the amount of data storage that you use should not
depend on the number of input values. Detail your diagram down to the level of
multiplications, divisions, and additions.
……………………………………………………………………………..

……..………………………………………………………………………

3) Using the quadratic formula as a starting point, prepare a data flow diagram for
computing the roots of the quadratic equation ax2 + bx +c = 0. Real numbers a,
b and c are inputs. Outputs are values of X= R1 and X = R2, which satisfy the
equation. Remember. R1 and R2 may be real or complex, depending on the
values of a, b, and c. The quadratic formula for R1 and R2 is (─ b ± SQRT (b2 ±
4ac)) / (2a).

…………………………………………………………………..……..….

…………………………………………………………………………….

3.8 SUMMARY

The functional model shows a computation and the functional derivation of the data
values in it without indicating how, when, or why the values are computed. The
dynamic model controls which operations are performed and the order in which they
are applied. The object model defines the structure of values that the operations

 45

Functional Modeling operate on. For batch-like computations, such as compilers or numerical
computations, the functional model is the primary model, but in large systems all three
models are important.

Data flow diagrams show the relationship between values in a computation. A data
flow diagram is a graph of process, data flows, data stores, and actors. Processes
transform data values. Low-level processes are simple operations on single objects,
but higher-level processes can contain internal data stores subject to side effects. A
data flow diagram is a process. Data flows relate values on processes, data stores, and
actors. Actors are independent objects that produce and consume values. Data stores
are passive objects that break the flow of control by introducing delays between the
creation and the use of data.

The object model, dynamic model, and functional model all involve the same
concepts, namely, data, sequencing, and operations, but each model focuses on a
particular aspect and leaves the other aspects uninterrupted. All three models are
necessary for a full understanding of a problem, although the balance of importance
among the models varies according to the kind of application.

3.9 SOLUTIONS/ ANSWERS

Check Your Progress 1

1) Functional Model

The functional model shows a computation and the functional derivation of the data
values in it without indicating how, when, or why the values are compounded. For
example a spreadsheet is a type of functional model. The values in a spreadsheet can
be calculated by using some formula, but it can not be structured further.

2 i) Data Flow Diagram: A data flow diagram is a graph which shows the flow of
data values from their sources in objects through processes that transform them
to their destinations in other objects. It does not show how the values are
controlled during computation. The Data Flow Diagram shows the functional
relationship of the values computed by a system. DFD contains processes that
transform data, data flows that move data, actor objects that produce and
consume data, and data store objects that store data passively.

ii) State Diagram: An object can receive a sequence of input instructions. The
state of an object can vary depending upon the sequence of input instructions. If
we draw a diagram which will represent all the processes (input) and their
output (states) then that diagram is known as state diagram. Processes are
represented by the arrow symbol and states by an oval symbol. For example, the
screen of an ATM machine has many states like main screen state, request
password state, process transaction state.

 Short Note

3i) Process: A process transforms data values. It is represented as an ellipse
containing a description of the transformation. Each process has a fixed number
of input and output data arrows, each of which carries a value of a given type.

ii) Data Flows: A data flow connects the output of an object or process to the
input of another object or process. It represents an intermediate data value
within a computation. Data flow specifies direction of flow of data from source
objects to the destination object.

iii) Actors: An actor is an active object that drives the data flow graph by
producing or consuming values. Actors are attached to the inputs and outputs of
a data flow graph.

 46

Modeling iv) Data Stores: A data store is a passive object within a data flow diagram that
stores data for later access. A data store allows values to be accessed in a
different order than they are generated.

Check Your Progress 2
1) A constraint shows the relationship between two objects at the same time, or

between different values of the same object at different times. A constraint may
be expressed as a total function or as a partial function. For example, a
coordinate transformation might specify that the scale factor for the
x-coordinate and the y-coordinate will be equal; this constraint totally defines
one value in terms of the other.

2) Give a functional model for your example system with the help of section 9.6 of
this Unit.

3) The data flow diagram for computing the volume and surface area of a cylinder
is given in Figure13 below.

Height

Radius

Surface
area

Compute
surface area

Compute
volume

Cylinder

Volume

Figure 13: Data flow diagram for computing volume and surface area of a cylinder.

In this figure, the object cylinder is represented by a rectangle. The processes compute
volume and surface are by ellipse, and the data flow by the arrow. The formula for
volume and surface area of represented cylinder can be taken respectively.

Check Your Progress 3

1) The data flow diagram shows the relationship between values in a computation.
The flow of electrical parameters is shown by the arrow symbol. In this DFD,
there are four processes. These are electrical analysis, mechanical analysis,
fan analysis, and thermal analysis. These four processes compute the various
electrical parameters that are required for the safe running of an electrical
motor.

The input electrical parameters are checked by the electrical analysis process. After
proper verification, the mechanical movement (electrical torque) is measured by the
mechanical analysis process. The characteristics of fan are computed by fan analysis
process. The temperature of the motor is computed by the thermal analysis process.
The flow of data from source to destination for this DFD is given by
Electrical analysis – mechanical analysis – fan analysis–thermal analysis, and
vice versa.

 47

Functional Modeling 2) Figure 14 (a) or (b) below shows the data flow diagram for computing the mean
for a sequence of input values.

 initialize

 mean = 0

 mean

Set mean
 to 0

Set count
 to 0

Count = 0

 Count

Input value
mean

New count

 Count

Adjust
mean

Increment
count

Figure 14 (a): DFD for computing mean

)1n(/xn n +

)1n(/1x

)1n(/n

N

NX

++

++

1nxn +

)1n(/xn n +

nx

x n+1/ (n+1)

mean

Input Value

Compute

Compute
x +1 / (n+1)

 N +1 N N / (n+1) Compute

Compute
N

Compute
N/(n+1)

(Note: n+1 = new count, x n = n th value, = average values)

Figure 14 (b): Data flow diagram for computing mean of a sequence of values

The above data flow diagram computes the mean of a sequence of input values. This
DFD is the required solution of the problem.

 48

Modeling 3) The Data Flow Diagram for computing the roots of the quadratic equation is
given by the following diagram.

Compute
A, b, c

Compute D
D = b2 -4 a c

Compute R 1
a2/)Db(+−

Compute R 1

Compute R 1
a2/)Db(−−

Compute R 1

Input value Input value

rootroot
1R 1R

2R2R

ca4b2 − ca4b2 −

Compute
a, b, c

Compute D
D = b2 ─ 4 a c

a2/)Db(+−

a2/)Db(−−

a2/)Db(+− c,b,a

Compute

D

Figure 15: Data Flow Diagram for computing the roots of quadratic equation

Implementation
Strategies

UNIT 1 IMPLEMENTATION STRATEGIES

Structure Page Nos.

1.0 Introduction 5
1.1 Objectives 5
1.2 Implementation Associations 6
1.3 Unidirectional Implementations 6

1.3.1 Optional Associations
1.3.2 One-to-One Associations
1.3.3 Associations with Multiplicity ‘Many’

1.4 Bi-directional Implementations 10
1.4.1 One-to-One and Optional Associations
1.4.2 One-to-Many Associations
1.4.3 Immutable Associations

1.5 Implementing Associations as Classes 14
1.6 Implementing Constraints 15
1.7 Implementing State Charts 16
1.8 Persistency 18
1.9 Summary 20
1.10 Solutions/Answers 20

1.0 INTRODUCTION

The transformation, from design models to code, is an easy and simple feature of
object-oriented design, but there are some features of the design models which do not
directly map into programming language structures. This unit considers some of the
most noticeable features, and discusses the various strategies that have to be adopted
for their implementation.

The most significant feature of class diagrams is association that is not directly
present in the programming languages structures. In this unit, we will describes the
different ways of implementation of complex types of association, such as qualified
associations and association classes.

The information contained in the dynamic models of an application is reflected in the
code that implements individual operations for that application. Object interaction
diagrams are used to describe the order in which messages are communicated in the
execution of an operation, and this information is used as guidance for the
implementation of individual operations.

State charts are used to describe constraints that must apply across all the operations
of a class, and which can affect the implementation of all a class’s operations. A
consistent strategy should be adopted to check that all these constraints are
correctly reflected in the implementation of the member functions of the class.

Basically, this unit will cover different aspects of implementation, which covers
implementing, associations, implementing constraints, and implementing statecharts.

1.1 OBJECTIVES
After going through this unit, you should be able to:

• explain how the design models are implemented in coding;
• explain how the unidirectional associations are implemented;
• explain how the bi-directional associations are implemented;
• describe how the associations are implemented as classes;
• show how the generalizations are mapped to the tables;

 5
• explain how the constraints are implemented.

Implementation • explain how the statecharts are implemented, and

• use the concept of persistence in the implementation.

1.2 IMPLEMENTATION ASSOCIATIONS

Associations describe the properties of the links that exist between different objects
when a system is running. A link from one object to another informs each object of
the identity, or the location of the other object. Association enables the objects to send
messages to each other using the link as a kind of communication channel. When
the implementation of links is done then these features of links should also to be
supported. You can implement a simple association by using references to linked
objects.

The basic difference between links and references is that links are symmetrical
whereas references refer only in one direction. If two objects are linked, a single link
serves as a channel for sending messages in either direction. By using a reference,
however, one object can send messages to another, but the other object is not aware
of the object that is referring to it. So, it has no way of sending messages back to the
first object. You can say that if a link has to support message passing in both
directions, it will require a pair of references for the implementation for each
direction.

But, the use of two references adds a considerable overhead for the implementation.
While implementing both references it has to be checked that inverse references are
consistently maintained. The implementation of associations is required to be
implemented only in one direction because that particular link only needs to be
traversed in one direction. The link used association for one direction can be
implemented by a single reference, pointing in the direction of traversal.

But, the implementation of an association only in one direction involves a tradeoff
between the present implementation strategy and the future modifications that may be
incorporated in the design which may also affect the association.

You can take unidirectional and bi-directional associations in this way:

i) unidirectional implementation associations are those in which the decision has
been taken to maintain the association in only one direction.

ii) in bi-directional implementations, association must be maintained in both
directions.

In general, there are two distinct aspects to the implementation of associations.

i) It is necessary to define the data declarations that will enable the details of
actual links to be stored. It will consist of defining data members in one class
that can store references to objects of the associated class.

ii) It is necessary to consider the means by which these pointers will be
manipulated by the rest of the application. The details of the underlying
implementation of the association should be hidden from client code.

Now, let us see how unidirection implementation takes place.

1.3 UNIDIRECTIONAL IMPLEMENTATIONS

In this section we will discuss cases by taking in to consideration that an association
will only be supported in one direction. This design decision can be represented on a
class diagram by writing an arrow (→) on the association to show the required
direction of traversal.

We will discuss the cases where the multiplicity of the type is:

 6

Implementation
Strategies

• Optional

• One, and/or

• Many.

1.3.1 Optional Associations
The Figure1 shows an association that is implemented in one direction. Every bank
account can have a debit card issued to the account holder for use. But it is not
necessary that all the account holders will take the debit card from the bank. It
depends upon the bank as well as on the account holder to have a debit card.

Debit Card 0..1 Account

 Figure 1: An optional association

This type of association you can implement using a simple reference variable, as
shown below. This allows an account object to hold a reference to, at most, one debit
card object. Cases where an account is not linked to a card are modeled by allowing
the reference variable that will point to the null.

public class Account
{
public DebitCard getCard()
{
return theCard;
}
public void setCard(DebitCard card){
thecard = card;
}
public void removeCard()
{
theCard = null;
}
private DebitCard theCard
}

The above code assumes that a card may be supplied when an account is created. In
addition, operations are provided to change the card linked to an account, or to
remove a link to a card altogether.

You can see that in this implementation, different cards are linked to an account at
different times during its lifetime. Associations with this type of property are called
mutable associations. On the other hand, immutable associations are those that
require that a link to one object cannot be replaced by a link to a separate object, i.e.,
the link cannot be changed. In this case, we will take the assumption that only one
card has been issued to a particular bank account.

If the association between accounts and debit cards cannot be changed, then the
following declaration of the account class should be used. This provides an operation
to add a card to an account, and only allows a card to be added if no card is already
held. Once allocated, a card cannot be changed or even removed, and the relevant
operations have been removed from the interface.

public class Account
{
public Debitcard getCard()
{
return theCard ;
}
public void setCard(DebitCard card)

 7

Implementation {

if (theCard != null)
{
// throw ImmutableAssociationError
}
theCard = card ;
}
private DebitCard the Card ;
}

1.3.2 One-to-One Associations

Some of the properties of associations can be implemented directly by providing
suitable declarations of data members in the relevant classes. Other semantic
features of an association can be enforced by providing only a limited range of
operations in the class’s interface, or by including code in the implementation of
member functions that ensures that the necessary constraints are maintained.

Now, let us consider the association shown below in Figure 2. This association
describes a situation where bank accounts must have a guarantor who will pay any
debts incurred by the account holder in exceptional conditions. It may frequently be
needed to find out the guarantor of an account, but it is not necessary to find the
details of the account of the guarantor for which s/he is responsible. So, the
implementation of the association will be only in the direction from account to
guarantor.
 1

Guarantor Account

Figure 2: A one-to-one association

You may implement the account class in the following manner if the above
assumptions are taken into consideration. The constructor will throw an exception if a
null reference to a guarantor object is provided, and no operation is provided in the
class’s interface to update the reference held.

public class Account
{
public Account (Guarantor g)
{
if (g == null) {
// throw Null Link Error
}
The Guarantor = g;
}
public Guarantor get Guarantor()
{
return the Guarantor;
}
private Guarantor the Guarantor;
}

The above code implements the association between account and guarantor objects as
an immutable association. If the association is mutable, in that case the guarantor of
an account could be changed, and a suitable function could be added to this class
provided that feature. It should also check that the new guarantor reference is –null or
not.

 8

Implementation
Strategies

1.3.3 Associations with Multiplicity ‘Many’
Figure 3 shows an association with multiplicity ‘many’ for which a unidirectional
implementation is required. In a bank, each manager is responsible for looking after
a number of accounts, but it is not necessary to find out the manager of a particular
account. In this association, a manager object could be linked not just to one, but
potentially to many account objects.

 * Account Manager

Figure 3: An association with multiplicity ‘many’

In order to implement this association, the manager object must maintain multiple
pointers, one to each linked account. A data structure is required to store all the
pointers. Apart from this, it may be the case that the interface of the manager class
will provide operations to maintain the collection of these pointers.

This type of association can be implemented by using of a suitable container class
from a class library. The class declares a vector of accounts as a private data member,
and the functions to add and remove accounts from this collection simply call the
corresponding functions defined in the interface of the vector class.

public class Manager
{
public void addAccount(Account acc)
{
theAccounts.addElement(acc) ;
}
public void removeAccount(Account acc){
theAccounts.removeElement(acc) ;
}
private Vector theAccounts
}

In implementation, there can only be, at most, one link between a manager and any
particular account. In this implementation, however, there is no reason why many
pointers to the same account object could not be stored in the vector held by the
manager. A correct implementation of the “addAccount” function should check
whether the account that is added is linked to the other manager object or not.

 Check Your Progress 1

1) What is the most significant feature that does not directly map into
programming language structures? Why?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What are object interaction diagrams?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) What is the difference between link and reference?

 9

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

Implementation 4) What are the two distinct aspects to the implementation of associations?

……………………………………………………………………………………

…………………………………………………………………………………

5) Discuss how the one-to-one associations have to be implemented.
……………………………………………………………………………………
……………………………………………………………………………………

1.4 BI-DIRECTIONAL IMPLEMENTATIONS

In a bi-directional implementation of an association, a pair of references should
implement each link. The declarations and code required to support such
implementations are essentially the same as discussed in the unidirectional
implementation. The only difference is that suitable fields have to be declared in both
classes participating in the association.

On problem with bi-directional implementation is that the extra complexity in its
implementations arises due to the need to keep the two pointers that implement a link
consistent at the run-time.

(a)

: Account :Guarantor

: Account

: Account
:Guarantor

… .
(b)

Figure 4: Referential integrity and its violation

It is necessary that the guarantor of an account must guarantee the same account type
of the property of an association should hold between the accounts and guarantors as
shown in Figure 4(a). Figure 4(b) violates this property, the top account object holds
a reference to a guarantor object which in turn holds a reference to entirely a
different account. These two references cannot be understood as being an
implementation of a single link. This is a case of not being in referential integrity.

It should be clear from the above example that referential integrity cannot be
ensured by simply giving appropriate definitions of data members in the relevant
classes.

The unidirectional implementations will not support every association needs for all
possible forms of manipulation of links. The behaviour that is required to be
supported will depend on the details of individual applications, and will be defined
by the active operational interfaces of the classes participating in the association.

1.4.1 One-to-One and Optional Associations
Assume that we are now required to provide a bi-directional implementation of the
association discussed in previous section of this unit. Let us also assume that the
association is immutable in the debit card to account direction, i.e., once a debit card
is linked to an account, it must stay linked to that account until the end of its

 10

Implementation
Strategies

lifetime. An account, on the other hand, can have different cards associated with it at
different times, to cater for situations where the account holder loses a card.

1 0..1 DebitCard Account

Figure 5: A bi-directional one-to-one association

We may think of this association as a combination of a mutable and optional
association in the left-to-right direction with an immutable association in the other. A
simple approach to its implementation would be to simply combine the
implementations of those given in unidirectional implementation as shown below:

public class Account
{
public DebitCard getCard() {...}
public void setCard(DebitCard card) {...}
public void removeCard() {...}
private DebitCard theCard ;
}
public class DebitCard
{
public DebitCard(Account a) { ...}
public Account getAccount() { ...}
private Account theAccount;
}

The above implementation provides the data members to store the bi-directional links.
But the operations available maintain the two directions of the link independently,
e.g., the pointer from the account to the card is set up in the account constructor and
the pointer from card to account in the card constructor.

For example, to create a link between a new debit card and an account, two separate
operations are required, first to create the card and second to link it to the account.
The link from card to account is created when the card itself is created. Code to
implement can be as follows:

Account accl = new Account() ;
Debitcard card1 = new Debitcard(acc1);
acc1.setCard(card1) ;

It is necessary to ensure that these two operations are always performed together.
However, as two separate statements are needed, there is a possibility that one might
be omitted, or an erroneous parameter supplied, leading to an inconsistent data
structure. In the following example, the debit card is initialized with the wrong
account.

Account acc1= new Account (), acc2 = new Account ();
DebitCard card1 = new DebitCard(acc2) ;
accl.setCard(card1);

A better solution is to give only one of the classes the responsibility of maintaining the
association. A link between two objects could then be created by means of a single
function call, and encapsulation could be used to ensure that only trusted functions
have the ability to directly manipulate links.

The choice of proper class in this regard is very important.

 11

The choice of which class to give the maintenance responsibility depends upon the
other aspects of the overall design. In this case, it is likely that there would be an
operation on the account class to create a new debit card for the account. Also, it
would provide a strong argument for making, the account class responsible for
maintaining the association. If this is the case, then the classes could be redefined as
follows.

Implementation public class Account

{
public DebitCard getCard()
{
return theCard;
}
public void addCard()
{
theCard = new DebitCard(this) ;
}
private DebitCard theCard ;
}
public class DebitCard
{
DebitCard(Account a) { theAccount = a ; }
public Account getAccount() {
return theAccount;
}
private Account theAccount ;
}

You can create debit cards by the ‘addCard’ operation in the account class. The
implementation of this operation dynamically creates a new debit card object, passing
the address of the current account as an initializer. The constructor in the debit card
class uses this initializer to set up the pointer back to the account object creating the
card. A single call to the add card operation is now guaranteed to set up a
bi-directional link correctly.

In the above example, implementation is simple because the association declared is
immutable in one direction. If, both directions of an association are mutable then a lot
of situations will arise in which links can be altered. Then a correct implementation
will be required to ensure that all the above things are correctly handled.

Take the assumption that a customer could hold many accounts but s/he has only one
debit card. S/he had the flexibility to select which account has to be debited when the
card is used. The association between accounts and debit cards would now be mutable
in both directions. It would be reasonable for the card class to provide an operation to
change the account with which card was associated.

There are many manipulations involved in above discussed case. First, the existing
link between the card and its account must be broken. Second, a new link must be
established between the new account and the card. Finally, this should only happen if
the new account is not already linked to a card.

The card class must call functions in the account class to update pointers, as shown in
the implementation of the ‘changeAccount’ operation given below.

public class Account
{
public DebitCard getCard() { ...}
public void addCard(DebitCard c) { ... }
public void removeCard()
{
theCard = null ;
}
private DebitCard theCard ;
}
public class DebitCard
{

 12

Implementation
Strategies

public DebitCard(Account a) {…}
public Account getAccount() {…}
public void changeAccount(Account newacc)
{
if (newacc.getCard() != null) {
// throw AccountAlreadyHasACard
}
theAccount.removeCard() ;
newacc.addCard(this) ;
}
private Account theAccount;
}

1.4.2 One-to-Many Associations

The bi-directional implementation of associations involving multiplicities of many
raises the same problems as discussed in last sub-section. For example, Figure 6
shows an association specifying that customers can hold many accounts, each of
which is held by a single customer.

1 *
Account Customer

Figure 6: Customers holding accounts

The customer class could contain a data member to store a collection of pointers to
accounts, and additionally each account should store a single pointer to a customer.
The responsibility of maintaining the links of this should be given to the customer
class.

1.4.3 Immutable Associations
Take the assumption that the association between accounts and guarantors was
intended to be immutable and are traversed in both the directions. As Figure 7 shows,
the relevant class diagram which preserves the restriction that each guarantor can only
guarantee one account.

Guarantor Account 1 1

Figure 7: An immutable one-to-one association

Each class will define a data member holding a reference to an object of the other
class. The class declarations might be as follows:

public class Account
{
public Account(Guarantor g)
{
theGuarantor = g;
}
public Guarantor getGuarantor()
{
return theGuaranter;
}
private Guarantor the Guarantor ;
}
public class Guarantor
{
public Guarantor(Account a)
{
theAccount = a;

 13

Implementation }

public Account getAccount()
{
return theAccount;
}
private Account theAccount ;
}
You can see, in above declarations, that they introduce a circularity. When an account
is created, it must be supplied with an already existing guarantor object, and likewise
when a guarantor is created it must be supplied with an already existing account. It
might be thought that this could be achieved by creating the two objects
simultaneously, as shown in the following code:

Account a = new Account (new Guarantor (a));
Guarantor g = a.getGuarantor();

Associations are decided at the time of describing the requirements of the systems.
Associations can be implemented in association classes and in the next section, we
will discuss the implementation of association as classes.

1.5 IMPLEMENTING ASSOCIATIONS AS
CLASSES

It is not possible to handle association classes with a simple implementation of
associations based on references. For example, consider the diagram shown below
which shows that many students can be registered as taking modules, and that a mark
is associated with each such registration.

Registration

* Student Module

 Mark: Integer

Figure 8: An association class

The association class shown in Figure 8 needs to be implemented as a class, to
provide a place to store the attribute values representing mark. The links
corresponding to the association cannot then be implemented as references between
the module and student classes.

A common approach, in this case, is to transform the association class into a simple
class linked to the two original classes with two new associations, as shown in
Figure 9 below. In this diagram, the fact that many students can take a module is
modeled by stating that the module can be linked to many objects of the registration
class, each of which is further linked to a unique student, namely, the student for
whom the registration applies.

1

mark: Integer

Registration * Student Module

Figure 9: Transforming the association into a class

 14

Implementation
Strategies

As a result of this transformation, neither of the associations in Figure 9 have link
attributes and so, they can be given straightforward implementations using references.

The original association shown in Figure 8 would naturally have been maintained by
the module class, which might provide operations to add a link to a student, and to
record a mark stored for a student. Despite the fact that the association is now being
implemented as a class, the interface presented to client code should remain
unchanged. This implies that the module class must maintain both the registration
class in Figure 8 and Figure 9. Also, you can see that there are two new associations.
Therefore, the operation to add a student to a module must create a new object and
two new links.

The implementation of the registration class is very simple. It must store a reference to
the linked student object and the mark obtained by that student. No need to provide
any exclusive operational interface.

class Registration
{
Registration (Student st)
{student = st; mark= 0}
private Student student ;
private int mark;
}

The relevant parts of the definition of the module class are written below. Here, you
can see that the implementation given in this example does not perform any of the
validation discussed above.

public class Module
{
public void enrol(Student st)
{ registrations.addElement(new Registration(st));
}
private Vector registrations;
}
Associations, are implemented as a class whenever a class diagram contains link
attributes, or associations modeled as classes. Many-to-many association as a
class can be implemented in many situations. A simple pointer-based implementation
will not be able to handle many- to-many association efficiently, whereas if the
association had been implemented as a class, it would then be almost insignificant to
add link attributes.

Bi-directional implementations of associations that are implemented, as a class do not
add new problems to the above-mentioned situation. This make it easily
implementable.

 Check Your Progress 2

1) Discuss how the bi-directional Implementations are made.
……………………………………………………………………………………

……………………………………………………………………………………

2) Explain how the associations are implemented as classes.
……………………………………………………………………………………

……………………………………………………………………………………

1.6 IMPLEMENTING CONSTRAINTS

 15

Class constraints are used to describe relationships that must be between the attribute
values of an instance of the class; and preconditions and post-conditions specify what
must be true before and after an operation are called. Once these are implemented by

Implementation including code in the class which checks these conditions at the appropriate times;

then the applications become more reliable and robust.

It is necessary that all the preconditions that are specified for an operation should be
explicitly checked in an implementation. Preconditions state properties of an
operation’s parameters that must be satisfied if the operation is to be able to run to
completion successfully. It is the responsibility of the caller of the operation to ensure
that the precondition is satisfied when an operation is called.

If an operation does not check its parameter values, then, there is a possibility that
wrong or meaningless values will go undetected, and this results in unpredictable run-
time errors. A better strategy is for an operation to check its precondition and to raise
an exception if a violation of the precondition is detected. The following example
provides a possible implementation of the withdraw operation of the savings account
class.
public class SavingsAccount
{
public void withdraw(double amt)
{
if (amt >= balance)
{
// throw PreconditionUnsatisfied
}
balance = balance - amt ;
}
private double balance ;
}

In general, any constraint can be checked at run-time by writing code that will
validate the current state of the model. But such checks increase overhead. That is
why, except for the case of precondition checking, constraints are rarely implemented
explicitly.

Statecharts are diagrams that specify an object’s responses to the events it might
detect during its lifetime. We will discuss statechart in next section.

1.7 IMPLEMENTING STATE CHARTS

It is very important to apply proper strategy in final implementation of the systems.
Here we will see some strategies for implementations.

A Basic Implementation Strategy

This approach models the different states in the statechart explicitly by means of an
enumeration in the class to which the statechart applies. The current state that an
object is in, is recorded by a special data member of the class that can take on values
from this enumeration.

Member functions that can have different effects depending on the state of the object
are implemented as switch statements, each case of which represents one possible
state of the object. The implementation of each case corresponds to a single transition
on the statechart. It should check any applicable conditions, perform any actions, and
if necessary change the state of the object by assigning a new value to the data
member which records the current state.

This implementation of this approach is simple and can be generally applied but it has
some disadvantages also. It does not provide much flexibility in the case where a new
state is added to the statechart. The implementation of every member function of the
class would have to be updated in such a case, even if they were unaffected by the
change. Also, the strategy assumes that most functions have some effect in the

 16

Implementation
Strategies

majority of the states of the object. If this is not the case, the switch statements will be
full of ‘empty cases’ and the implementation will contain a lot of redundant code.

An Alternative Approach

An alternative implementation of statecharts can avoid these problems at the cost of
representation of individual states. Rather than representing the current state of an
object by the value of a data member in the object itself, this approach represents
states as objects. Each instance of the class described by the statechart maintains a
pointer to its current state, which is an instance of one of the state classes. The state
classes are arranged in a generalization hierarchy so that different states can be
referred, by the same pointer.

Now, let us see a class diagram illustrating the structure of this implementation. You
can see in Figure10 below, which shows the classes that would be declared to
implement the creation tool class from the diagram editor.

1 1
State

LocatingStop LocatingStart

CToolState CreationTool

Figure 10: Representing states with classes

A field in the creation tool class will hold a reference to an object of type ‘CtoolState’.
This is an abstract class, so at run-time the object referred to will be an instance of one
of the subclasses ‘LocatingStart’ or ‘LocatingStop’. In this way, a creation tool always
holds a reference to an object representing its current state.

The classes representing states provide implementations of the operations declared in
the creation tool interface. When a creation tool receives a message, it simply passes it
on to the object representing its current state, which contains a suitable
implementation. A partial definition of the creation tool class could be given as
follows.

public class CreationTool
{
public void press()
{
state.press() ;
}
private CToolState state;
}

The interface of the ‘CtoolState’ class must include all the messages that will be
passed on from tools. Default implementations can be provided in ‘CtoolState’,
however, so that individual states need only define those operations which evoke
some interesting behaviour in that state. The following code gives a partial declaration
of the ‘CtoolState’ class.

public abstract class CToolState
{
public abstract void press();
}

 17

Subclasses that represent individual states must now redefine the operations that
interest them. In the case of ‘press’, the press event can be detected in the
‘LocatingStart’ state, and in response the tool should change state. A possible

Implementation definition of the function is given below. For reasons that are discussed below, only

pseudocode implementations of the functions are given.

public class LocatingStart extends CToolState
{
public void press()
{
set start position to current;
draw faint image of shape;
set current state to ‘LocatingStop’ ;
}
}

As the press event cannot be received in the ‘LocatingStop’ state, as the mouse button
is already depressed, no definition of this function is required in the class
‘LocatingStop’. The default implementation of the function inherited from
‘CTooIState’ is quite adequate.

It is important that any implementation must be sensitive to the fact that an object
can be in different states at different times, and that the effect of operations is
dependent on the current state. The simple implementation makes this all explicit,
and the programmer must write switch statements to detect the current state of the
object. In the more sophisticated implementation outlined above, detection of the
current state is performed implicitly by the dynamic binding performed when a virtual
function from the general ‘CtoolState’ class is called.

The sophisticated implementation has several advantages over the simple one. For
example, the classes that represent individual states only need to define the operations
that are relevant to them, and can inherit default implementations of the others from
the general state class. This can considerably simplify the implementation of a
statechart, especially in the case where many operations are only applicable in a small
subset of the object’s states.

The sophisticated approach is also more maintainable than the simple one. For
example, if the statechart is extended to include extra states, these can simply be
added as new subclasses of the general state class, and existing code which is not
relevant to the change will be unaffected. This contrasts with the simple
implementation, where adding a state requires the implementation of every member
function to be updated.

There are costs associated with the sophisticated approach, however, which mostly
stop from the fact that the implementation of the member functions of the state classes
often needs to update the state of the object itself.

1.8 PERSISTENCY

Persistent data is data which has a longer lifetime than the program created it. In the
context of an object oriented program, this means that it must be possible to save the
objects created in one run of a program and to reload them at a later date. The user
should not have to create all the data used by a program from scratch every time the
program is run. The usefulness of the program will be rather limited if it is not
possible to save diagrams to disk and to continue working on them at a later date.

Enabling data to be stored on a permanent storage medium provides persistency.
The most common techniques used are to store data in files, or to make use of a back-
end database system.

Identifying Persistent Data

The basic problem is that it may not be always clear from a model exactly what data
needs to be persistent. Models in UML are not restricted to describing permanent data,

 18

Implementation
Strategies

or database schemas, and as a result a single model can combine persistent and
transient data.

The only notation that UML provides for persistency is a tagged value ‘persistence’.
This has two values ‘persistent’ and ‘transient’ and can be applied to classes,
associations and attributes.

For example, the diagram and element classes in the diagram editor need to be
persistent. This is the data that the user would expect to be able to save and reload at a
later date. The tool class, on the other hand, does not need to be persistent. Tools
represent transient features of the user’s interaction with the editor, and it would not
be felt to be a major shortcoming if the tool that was being last used was not available
when the program was restarted.

(persistent)
* 1

0..1

1

(transient)

Element
(persistent)

Diagram
(persistent)

Tool
(transient)

Figure 11: Persistent and transient classes

The primary unit of persistency is the class. Associations between two persistent
classes are normally persistent, so that information about the links between persistent
objects is stored. An association between a persistent and a transient class will be
transient, as the instances at one end of the association are not being stored.
Attributes normally have the same persistence value as their enclosing class, though it
is sometimes natural to have a transient attribute within a persistent class.

Dealing with Object Identities

References are transient, and the persistency of an object model cannot be obtained
simply by copying the values of these references to disk. The problem is that
references are normally implemented using the address of the object referred to in
memory, and therefore an object’s identity depends on where free memory happened
to be available when it was created.

A more common approach, however, is to adopt some form of encoding whereby
references and object identities are stored in such a way that they can be consistently
recreated.

Serialization

Serialization is a generic term used for mechanisms that enable objects and object
structures to be converted into a portable form, removing the volatility created by
object addresses. As we have already studied in MCS-024, serialization is provided in
Java by means of an interface called ‘Serializable’. This interface defines no methods,
so in order to make a class serializable it is sufficient to declare that it implements this
interface. Once this has been done, the methods ‘writeObject’ and ‘readObject’ can be
used to transfer objects to and from streams, and persistence can then easily be
implemented. Serialization therefore provides a convenient and straightforward way
of making data persistent. It is most appropriate when the amount of data involved is
relatively small. If larger amounts of data are to be stored, serialization may no longer
be appropriate.

 19

Implementation Check Your Progress 3

1) What do you mean by persistence? How you will make your data persistent?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What is serialization? Where it is used and why?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) What are the different strategies of implementation of the Statecharts?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

1.9 SUMMARY

A simple strategy for implementing associations uses references to model links.
Implementations can be either unidirectional or bi-directional, depending on how the
association needs to be navigated. Bi-directional implementations of associations need
to maintain the referential integrity of the references implementing a link. A strategy
for robustness is to assign the responsibility of maintaining references to only one of
the classes involved. Also, we have seen that Association classes should be
implemented as classes. This involves introducing additional associations connecting
the association class to the original classes. Implementing an association as a class is a
general strategy for the implementation of associations that can increase the ability of
a system to withstand future modifications at the expense of a more complex
implementation.

We saw that Constraints in a model can be explicitly checked in code, but often it is
only worth doing this for the preconditions of operations. A sophisticated technique
for implementing statecharts was described, which represented each state by a class.
This offers considerable benefits, at the cost of a significantly more complex
implementation. Persistent data is data that must be preserved after the program which
created it has finished running. Providing persistence for object structures is not easy,
because of the use of references to implement links between objects. Small amounts
of data can be saved using the technique of serialization, provided by many object-
oriented programming libraries.

1.10 SOLUTIONS/ANSWERS

Check Your Progress 1

1) Association, because there are complex types of association, such as qualified
associations and association classes which are very difficult to implement.

2) Object interaction diagrams are used to describe the order in which messages
are communicated in the execution of an operation, and this information is used
as guidance for the implementation of individual operations.

 20

Implementation
Strategies

3) The basic difference between links and references is that links are
symmetrical whereas references refer only in one direction. If two objects are
linked, a single link serves as a channel for sending messages in either
direction. By using a reference, however, one object can send messages to
another, but the other object is not aware of the object that is referring to it.

4 i) It is necessary to define the data declarations that will enable the details of
actual links to be stored. It will consist of defining data members in one class
that can store references to objects of the associated class.

 ii) It is necessary to consider the means by which these pointers will be
manipulated by the rest of the application. The details of the underlying
implementation of the association should be hidden from client code.

5) Some of the properties of associations can be implemented directly by
providing suitable declarations of data members in the relevant classes. Other
semantic features of an association can be enforced by providing only a limited
range of operations in the class’s interface, or by including code in the
implementation of member functions that ensures that the necessary constraints
are maintained.

Check Your Progress 2

1) In a bi-directional implementation of an association, a pair of references
should implement each link. The declarations and code required to support
such implementations are same as needed in the unidirectional implementation.
The only difference is that suitable fields have to be declared in both classes
participating in the association.

2) A common approach in this case is to transform the association class into a
simple class linked to the two original classes with two new associations, as
shown in Figure 9.

Check Your Progress 3

1) Persistent data is data, which has a longer lifetime than the program that created
it. Enabling data to be stored on a permanent storage medium provides
persistency. The most common techniques used are to store data is in the form
of files or to make use of a back-end database system.

2) Serialization is a generic term used for mechanisms that enable objects and
object structures to be converted into a portable form, removing the volatility
created by object addresses.

Serialization provides a convenient and straightforward way of making data
persistent. It is most appropriate when the amount of data involved is relatively
small. If larger amounts of data are to be stored, serialization may no longer be
appropriate.

3) There are two strategies of implementation for state charts:

i) Basic Implementation Strategy

This approach models the different states in the statechart explicitly by
means of an enumeration in the class to which the statechart applies. It
represents the current state of an object by the value of a data member in
the object itself.

ii) An Alternative Approach

 21

This approach represents states as objects. Each instance of the class
described by the statechart maintains a pointer to its current state, which
is an instance of one of the state classes. The state classes are arranged in
a generalization hierarchy so that the same pointer can refer different
states.

 22

Implementation

Implementation

UNIT 2 OBJECT MAPPING WITH
 DATABASE
Structure Page Nos.

2.0 Introduction 22
2.1 Objectives 22
2.2 Relational Database Schema for Object Modes 22

2.2.1 General DBMS Concepts
2.2.2 Relational DBMS Concepts
2.2.3 RDBMS Logical Data Structure

2.3 Object Classes to Database Tables 27
2.3.1 Extended Three Schema Architecture for Object Models
2.3.2 The use of Object IDs
2.3.3 Mapping Object Classes to Tables

2.4 Mapping Associations to Tables 29
2.4.1 Mapping Binary Associations to Tables
2.4.2 Mapping Many-to-Many Association to Tables
2.4.3 Mapping Ternary Associations to Tables

2.5 Mapping Generalizations to Tables 33
2.6 Interfacing to Databases 36
2.7 Summary 37
2.8 Solutions/Answers 38

2.0 INTRODUCTION

Object oriented designs are efficient, coherent and less prone to the update
problems that are present in many other database design techniques presently.
Relational databases are mostly widely used and employed in the organisations.
It is not wrong to say that relational DBMS are increasing their advantage in
functionality and flexibility and are also improving their performance. In spite of
having many advantages in comparison to other databases, object oriented DBMS
have not able to reach the commercial mainstream. Even so, object oriented DBMS is
in the development stage. Many DBMS companies have started to support the concept
of object oriented Design in their new products.

In this unit, we will discuss data base concept related object orientation which
includes discussion on relational database schema for object models, object classes
and database tables, and mapping of associations and generalizations to tables.

2.1 OBJECTIVES
After going through this unit, you should be able to:

• explain object modes for relational database schema;
• explain how the object classes are mapped to the database tables;
• explain how the associations are mapped to the tables;
• explain how the generalizations are mapped to the tables;
• describe the interfacing to database, and
• describe the object mapping with databases.

2.2 RELATIONAL DATABASE SCHEMA FOR
OBJECT MODES

You have already studied the basics of DBMS in MCS-023. Let us very quickly
refresh those concepts.

 22

Object Mapping with
Database

2.2.1 General DBMS Concepts
The database management system (DBMS) is a software system that enables users
to define, create, maintain, and control access to the database. Physically, this
database is stored in one, or more files.

There are many reasons for using a DBMS, some of which are:

1. Control of data redundancy.
2. Data consistency: by eliminating or controlling redundancy, the inconsistency in

the data of database is reduced.
3. Sharing between users: multiple users can access the database at the same time.
4. Sharing between applications: multiple application programs can read and write

data to the same database.
5. Improved data integrity: database integrity refers to the validity and consistency

of stored data. A DBMS can control the quality of its data over and above
facilities that may be provided by application programs.

6. Improved security: database security is the protection of the database from
unauthorized users.

7. Improved backup and recovery services: the database is protected from hardware
crashes, and disk media failures.

8. Extensibility: data may be added to the database without changing the existing
programs.

9. Data distribution: the database may be partitioned across various sites,
organizations, and hardware platforms.

10. Economy of scale: combining all the organization’s operational data into one
database, and creating a set of applications that work on this one source of data
can result in cost savings.

The lifecycle of the database applications includes the following steps:

1. Requirement analysis of the application.
2. Design of the application.
3. Devise a specific architecture for coupling the application to a database.
4. Selection of the desired DBMS depending upon the feasibility analysis.
5. Design of the database.
6. Write the application programs which provides a user interface, validate data, and

perform computations.
7. Populate the database with the required data.
8. Execute the application and then query, insert, and update the database as needed.

There are two approaches to database design, attribute driven and entity driven.

• Attribute driven: Compile a list of attributes relevant to the application and
normalize the groups of attributes that preserve functional dependencies.

• Entity driven: Discover entities that are meaningful to the application and
describe them.

In a typical database design, there are few entities as compared to the attributes. Entity
design is much more easily to manage. Object modeling is a form of entity design.

The three schema architecture on DBMS that was originally proposed by
ANSI/SPARC committee is shown in Figure1. The database design consists of three
layers, which are:

• External schema,
• Conceptual schema, and
• Internal schema.
External schema: an external view is an abstract representation of some portion of
the total database. An external schema is a definition of an external view. Each
external schema is a database design from the perspective of a single application. The
external schema isolates applications from most changes in the conceptual schema.

 23

Implementation • Conceptual schema: The conceptual view is a logical representation of the

database in its entirety. The conceptual schema is a definition of that
conceptual view. It integrates related applications and hides the details of the
implementation of the underlying DBMS.

• Internal schema: The internal schema is the database as it is physically stored.
The internal schema is the definition of that internal view. The internal schema
level consists of actual DBMS code required for the implementation of the
conceptual schema.

Internal Mapping

Conceptual

Conceptual Mapping

External

Internal
Schema

Conceptual
Schema

External
Schema

External
Schema

External
Schema

Figure 1: ANSI-SPARC Three level Architecture

Object modeling is useful for designing both the external and conceptual schema.
For this, one should construct one object model for each external schema, and
another object model for the conceptual schema.

2.2.2 Relational DBMS Concepts
RDBMS, as defined by Codd, has three major parts:

1. Data that is presented as tables
2. Operators for manipulating tables
3. Integrity rules on tables.

Now, let us discuss the concepts covering these three parts.

2.2.3 RDBMS Logical Data Structure
A relational database logically appears simply as a collection of tables. Tables have
a specific number of columns and an arbitrary number of rows. The columns of
tables are called attributes and directly correspond to attributes in object models. The
rows are called tuples and correspond to object instances and links. A value is stored
at each table row and column intersection.

Each value in a table must belong to the domain of its attribute or can be null. Null
means that an attribute value is unknown or indeterminate.

The RDBMS decides if tuning is required for processing a query, and if so,
automatically uses it. The RDBMS automatically updates tuning information

 24

Object Mapping with
Database

whenever the corresponding tables are updated. Indexing, hashing, and sorting are
common tuning techniques.

RDBMS Operators

SQL is the most popular language for RDBMS. It follows ANSI as well as ISO
standards. SQL provides operators for manipulating tables. The SQL ‘SELECT’
statement queries tables. The syntax of the select command looks something like:
SELECT attribute-list {as Alias}
FROM table-1, table-2, . . .
WHERE predicate-is-true
Logically Table-1, Table-2, and any others are combined into one temporary table.
The attribute list specifies which columns should be retained in the temporary table.
The predicate expression specifies which rows should be retained.
SQL can be classified into two categories:
SQL DDL commands: for creating the tables.
SQL DML commands : for inserting,updating, deletion operations.
SQL commands create Tables, insert rows into tables, delete rows from tables, and
perform other functions.

RDBMS Integrity

A primary key is a combination of one, or more attributes whose unique value locates
each row in a table. The primary key is always a candidate key. In the table shown
below, emp_no is the primary key of the employee table; dept_no is the primary key
of the department table.

Table 1: Employee Table

emp_no Emp_name Address dept_no

1 Ram Kumar 20/780, Hauz Khas, New Delhi 02
2 Shyam Kumar 2/462, Sector 62,Noida 01

Table 2: Department Table

dept_no Department Name Address

01 Sales 2/2 Sector 2, Noida
02 Finance 1/2 Hauz Khas, New Delhi

Referential integrity requires that the RDBMS keep each foreign key consistent with
its corresponding primary key. A foreign key is a primary key of one table that is
references in another table. Referential integrity is useful when we are mapping object
models to tables.

Normal Forms

Normal forms are rules developed to avoid logical inconsistencies from table
update /insert operations. Each normal form avoids a form of redundancy in table
organization that could yield ambiguity results if one table is updated independently
of other tables. There are many levels of normal form, i.e., 1NF to 5NF and BCNF.
Each higher level of normal form adds a constraint to the normal below it. As the
database designer satisfies higher normal form, tables tend to become fragmented,
higher normal forms improve database consistency, but at the cost of added navigation
and slower query execution.

A table is in first normal form when each attribute will have atomic value. A table is
in second normal form when it satisfies first normal form and the partial
dependency(ies) in the table are removed.

A table is in third normal form when it satisfies second normal form and transitive
dependency is removed if any.

Views

 25

View is a virtual table that is dynamically computed as needed. A view does not
physically exist in the database but is derived from one or more underlying tables. In

Implementation theory, views are the means for deriving external schema from conceptual schema

for the ANSI three schema architecture. Commercial, RDBMS usually support
reading through views, but rarely support writing through views.

Student Table

Table 3: Different views from Student Table

Name_id Course_No Grade Phoneno Major_no Major-elective prof

N1 C1 A 232456 M1 M1E1 SANJAY

N2 C2 B 256665 M1 M1E1 RAM

N3 C2 D 267677 M2 M2E1 RAM

View 1 View 2

Course_No Prof. Name_id Course_No grade

C1 Sanjay N1 C1 A

C2 ram N2 C2 B

 N3 C2 D

View 3 View 4

Major_no Major-Elective Name_id Phoneno Major_no

M1 M1E1 N1 232456 M1

M2 M2E1 N2 256665 M1

 N3 267677 M2

 Check Your Progress 1

1) What are the advantages of object oriented databases in comparison with
others? Why it is still not widely used?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What are three components of the schema architecture proposed by

ANSI/SPARC?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) What are the different approaches for database design?

……………………………………………………………………………………

……………………………………………………………………………………

 ……………………………………………………………………………………

 26

4) What are the different integrity constraints in RDBMS?

……………………………………………………………………………………

……………………………………………………………………………………

Object Mapping with
Database 2.3 OBJECT CLASSES TO DATABASE TABLES

Here, we will consider relational database design as RDBMS technology is gaining
more acceptance among organisation and companies and it dominates the
marketplace.

2.3.1 Extended Three Schema Architecture for Object Models
First, we should formulate object models for the external, and conceptual schema.
Then we should translate each object model to ideal tables, that is, the table model.
Views and interface programs connect external tables to conceptual tables. Conceptual
tables convert these to the internal schema.

The object model focuses on logical data structures. Each object model consists of
many classes, associations, generalizations, and attributes. Object models are effective
for communicating with application experts and reaching a consensus about the
important aspects of a problem. Object models help developers achieve a consistent,
understandable, efficient, and correct database design.

Each table model consists of many ideal tables. These ideal tables are generic and
DBMS independent. Ideal tables abstract the common characteristics of RDBMS
implementations. The table model decouples DBMS from object model to table model
mapping rules.

Mapping rules
Conceptual table
model

Mapping rules
External object
models

Internal
Schemas

Interface
Views and/or
Program

Conceptual table
model

External table

External table
models

Family of related
application

Figure 2: Object modeling and three schema architecture for relational DBMS.

In order to translate from an object model to ideal tables, we must choose from
different mapping alternatives. For example, there are two ways to map an
association to tables, and four ways to map a generalization. We must also supply
details that are missing from the object model, such as the primary key and candidate
keys for each table and whether each attribute can be null, or not null. Attributes in

 27

Implementation candidate keys usually should not be null. You must assign a domain to each attribute

and list groups of attributes that are frequently accessed.

The internal schema of the three-schema architecture consists of SQL commands that
create the tables, attributes, and performance tuning structures.

2.3.2 The use of Object IDs
Each class-derived table has an ID for the primary key, one or more object IDs form
the primary key for association derived tables. An ID is the equivalent database
construct. There are benefits of using the IDs. IDs are never changing and completely
independent of changes in data value and physical location. The stability of IDs is
particularly important for associations since they refer to objects. A changing in a
name requires update of many associations. IDs provide a uniform mechanism for
referencing objects.

On the other hand, IDs have some disadvantages also. There is no support by the
RDBMS for generating the IDs. For example, it is difficult to track previously
allocated IDs, and, to reclaim deleted IDs for reuse.

Object oriented programming uses IDs of many bits, so that reuse of IDs is avoided.
We can define IDs as attributes, and adopt a mechanism for handling them.
IDs are not used in applications where users directly access the database. A user
thinks in terms of descriptive properties such as names, and not in terms of numbers.
The advantage of IDs may prevail when database access is restricted via programs.
Restricted access often occurs because application software is needed to compensate
for DBMS deficiencies, to enforce integrity, and to provide a user interface.

2.3.3 Mapping Object Classes to Tables
Each object class maps to one, or more tables in the database. The objects in a class
may be partitioned horizontally and/or vertically. For instance, if a class has many
instances from which a few are often referenced, then horizontal partitioning may
improve efficiency by placing the frequently accessed objects in a table, and the
remaining objects in another tables. Similarly, if a class has attributes with different
access patterns, it may help to partition the objects vertically.

Employee Table

Table 4: Horizontal Partition

emp_no Emp_name Address
1 Ram Kumar 20/780, Hauz Khas, New Delhi
2 Shyam Kumar 2/462, Sector 62, Noida

emp_no Emp_name Address
3 Avinash Kumar F32, Madangir, New Delhi

Table 5: Vertical Partition Horizontal and Vertical Partitioning of Tables

emp_no Emp_name
1 Ram Kumar
2 Shyam Kumar

emp_no Address

1 20/780, Hauz Khas, New Delhi
2 2/462, Sector 62, Noida

An object class is converted to one table. Class employee has attributes emp_name
and address. The table model lists these attributes, and adds the implicit object ID. As
part of formulating the table model, we also add details. We specify that emp_ ID, ID
cannot be null since it is a candidate key. Emp_name cannot be null_name must be

 28

Object Mapping with
Database

entered for every employee. Attribute address can be null. We assign a domain to each
attribute, and specify the primary key for each table. Finally, the SQL DDL statements
creates the employee table.

Table Model

Attribute Name Nulls? Domain
Emp_ID N ID
Emp_name N Name
Address Y address

Employee Table
Candidate Key: (Emp_ ID)
Primary key : (Emp_ ID)
Frequently accessed: (Emp_ ID)(emp_name)

Create TABLE Employee

(Emp_ID) ID not null,
emp_name char(20) not null,
address char(20)

PRIMARY KEY (Emp_ ID));
CREATE SECONDRY INDEX employee-index-name

ON Employee (emp_name);

MAPPING A CLASS TO A TABLE

2.4 MAPPING ASSOCIATIONS TO TABLES

In this section, we will discuss the mapping of different kinds of associations into
database tables.

2.4.1 Mapping Binary Associations to Tables

In general, an association may, or may not map to a table. It depends on the type and
multiplicity of the association, and the database designer’s preferences in terms of
extensibility, number of tables, and performance tradeoffs. Let us see one example of
mapping a binary association into tables.

Object Model

Table Model

Attribute Name Nulls? Domain
person_ ID N ID
person_name N Name
Address Y address

Person

Person_name
Address

Company

Company Name
Address

Number of products

Buys_Product

Employee
Emp_name

Address

 29

Implementation Person Table

 Candidate Key: (person_ ID)
 Primary key : (person_ ID)
 Frequently accessed: (person_ ID)(person_name)

Attribute Name Nulls? Domain
company_ ID N ID
company_name N Name
Address Y address

Company Table
 Candidate Key: (company_ ID)
 Primary key: (company_ ID)
 Frequently accessed: (company_ ID)
 (company_name)

Attribute Name Nulls? Domain
company_ ID N ID
person_ ID N ID
Number_of _products Y product-count

Buys_products Table
 Candidate Key: (company_ID, person_ ID)
 Primary key : (company_ID, person_ ID)
 Frequently accessed: (company_ID, person_ ID)

SQL Code Create TABLE Person

(person_ID ID not null,
person_name char(20) not null,
address char(20)

PRIMARY KEY (person_ ID));

CREATE SECONDARY INDEX person-index-name

 ON Person (person_name);

 Similarly, table and indexes can be created for company also

Create TABLE Buys_product

SQL Code (company_ID ID not null,
person_ID ID not null,
number_of_products integer ,
PRIMARY KEY ((company_ID, person_ ID)),
FOREIGN KEY (company_ID) references Company,
FOREIGN KEY (person_ ID)) references Person);,

CREATE SECONDARY INDEX buys_product-index-
company

 ON buys_product (company_ID);

CREATE SECONDARY INDEX buys_product-index-person
 ON buys_product (person_ID);

2.4.2 Mapping Many-to-Many Association to Tables
A many to many association always maps to a distinct table. The primary keys for
both related classes and any link attributes become attributes of the association table.
Attributes company ID, and person ID combine to form the only candidate key for the
Buys_product table. In general, an association may be traversed starting from either

 30

Object Mapping with
Database

class so that both company ID and Person ID could be frequently accessed. The
foreign key clauses to the SQL code indicates that each Buys_product table tuples
must reference a company and person that had been defined in their respective tables.

An association table always sets the foreign keys from the related objects to not null.
If a given pair of objects does not have a link, we omit an entry in the association
table.

Job designation

Works-for Person
Person_name
Address

Company
Company Name
Address

Figure 3: Object Model for one-to-many Association

Company Table (similar to the Company table in the last example)
Person Table (similar to Person table in the last example)

Attribute Name Nulls? Domain
company_ ID N ID
person_ ID N ID
Job_designation Y Designation

 Works_for Table

Candidate Key: (person_ ID)
Primary key : (person_ ID)
Frequently accessed: (company_ID, person_ ID)

Table Model for one-to-many Associations-distinct association table
Company Table (similar to the Company table in the last example)

Attribute Name Nulls? Domain
person_ ID N ID
person_name N Name
Address Y Address
company_ ID Y ID
Job_designation Y Designation

 Person Table

Candidate Key: (person_ ID)
Primary key: (person_ ID)
Frequently accessed: (person_ ID) (person_name)(company_ID)

Table Model for one-to-many Associations-added association table

The Figure 3 shows two options for mapping a one-to-many association to the tables.
We can create a distinct table for the association, or add a foreign key in the table for
many class. The advantages of merging an association into a class are:

1. Fewer tables
2. Faster performance due to fewer tables to navigate.

The disadvantage of merging an association into a class are:

1. Less design firmness: associations are between independent objects of equal
weight. In general, it seems inappropriate to mix objects with knowledge of
other objects.

2. Reduced Extensibility: it is difficult to get multiplicity right on the first few
design passes. One-to-one and one-to-many associations may be externalised.
Many-to-many associations must be externalised.

 31

Implementation 3. Increased complexity: an assymetrical representation of the association

complicates search and update.

The final decision on whether to merge an association into a related class depends on
the application. For a one-to-many association you may also merge both classes and
the association all into one table.

2.4.3 Mapping Ternary Associations to Tables
Whenever a ternary relationship is there between the different classes then each class
is mapped to a table with the inclusion of object ID. Apart from this a new ternary
table is also created which has attributes from the different classes involved in the
relationship. The attributes will the object ID of all the classes involved in the
relationship and the attributes of the relation. Let us look at one example of mapping
a ternary association to the tables.

Object model date

branch

job

person

Candidate key: (person_ID, branch_ID, job_ID)

Ternary Table:

Attribute Name Nulls? Domain
person_ID N ID
job_ID N ID
branch_ID N ID
hours Y Time

Table Model Candidate key: (person_ID, branch_ID, job_ID)

Primary key: (person_ID, branch_ID, job_ID)
Frequently accessed: (person_ID, branch_ID, job_ID)

Person Table:

Attribute Name Nulls? Domain
person_ ID N ID
person_name N Name
Address Y Address

Candidate Key: (person_ ID)

 Primary key: (person_ ID)
 Frequently accessed: (person_ ID)(person_name)

Similarly, the job and branch tables will have the required attributes.

SQL Code Create TABLE Person

(person_ID ID not null,
person_name char(20) not null,
address char(20)
PRIMARY KEY (person_ ID));

 32

Object Mapping with
Database

Similarly, create the other table for job and branch
Create TABLE Person-job-branch-ternary
(person_ID ID not null,
job_ID ID not null,
branch_ID ID not null,
date date ,

PRIMARY KEY (person_ID, branch_ID, job_ID),
Foreign key (person_ID) references person,
Foreign key (job_ID) references job,
Foreign key (branch_ID) references branch);

Also, create the indexes in the same manner

2.5 MAPPING GENERALIZATIONS TO TABLES

There are different approaches for mapping generalizations to table.

Vehicle Type

Truck

No-of-axles
Capacity-in-Tonnes

Car

No-of-passengers
maxspeed

Vehicle

Vehicle name
cost

Figure 4: Object Model for Generalization

The first approach is shown in the Figure 4. The superclass and the subclass each map
to a table. The identity of an object across a generalization is preserved through the
use of a shared ID. Thus, vehicle car may have one row in the vehicle table with ID
1001, and another row in the Car table also with ID 1001.This approach is simple and
extensible. However, it involves many tables, and super class to subclass navigation
may be slow.

The navigation of the tables is as follows:

1. The user gives a vehicle name.
2. Find the Vehicle row that corresponds to vehicle name.
3. Retrieve the vehicle ID and vehicle type for this row.
4. Go to the subclass table indicated by vehicle type, and find the subclass row

with the same ID as the Vehicle row.

Table: Model for Generalization Superclass and Subclass Tables:

Vehicle table:

Attribute name Nulls Domain
Vehicle-ID N ID
Vehicle-name N Name
Cost Y Money
Vehicle-type N Vehicle type

 33

Implementation Candidate Key: (Vehicle-ID, Vehicle-name)

Primary key: (Vehicle-ID)
Frequently accessed: (Vehicle-ID, Vehicle-name)

Car table:

Attribute name Nulls Domain
Vehicle-ID N ID
No-of-passengers Y Person
Maxspeed Y speed

Candidate Key: (Vehicle-ID)
Primary key : (Vehicle-ID)
Frequently accessed: (Vehicle-ID)

Truck table:

Attribute name Nulls Domain
Vehicle-ID N ID
No-of-axles Y count-axles
Capacity-in-Tonnes Y capacity

Candidate Key: (Vehicle-ID)
Primary key: (Vehicle-ID)
Frequently accessed: (Vehicle-ID)

The user may specify vehicle type name “vehicle car.” The application looks in the
vehicle table and finds that vehicle car has ID 1001 and vehicle type car. The
application then searches the car table and retrieves additional data for ID 1001.
The SQL code for the generalization of the super-class and sub-class as mentioned
above is as follows:

Create table vehicle

(Vehicle-ID ID not null,

Vehicle-name char (40) not null,

cost number,

Vehicle-type char (8) not null,

primary key (Vehicle-ID));

Create Secondary index vehicle-index-name on vehicle (vehicle-name);

Create table car
(Vehicle-ID ID not null,
no-of-passengers number,
maxspeed real,
primary key (Vehicle-ID) ,
foreign key (Vehicle-ID) references vehicle);

Create table truck
(Vehicle-ID ID not null,
no-of-axles number,
Capacity-in-Tonnes real,
primary key (Vehicle-ID),
foreign key (Vehicle-ID) references Vehicle);

 34

Object Mapping with
Database

In the other approach, the navigation from superclass to subclass is eliminated and
thus speed performance is achieved. The improved performance incurs a price by
inserting the attributes of Vehicle table in both the subclasses.

Table Model for Generalisation Many Subclass Tables:

Car table:

Attribute name Nulls Domain
Vehicle-ID N ID
Vehicle-name N Name
Cost Y Money
No-of-passengers Y Person
Maxspeed Y Speed

Candidate Keys: (Vehicle-ID, Vehicle-name)
Primary key: (Vehicle-ID)
Frequently accessed: (Vehicle-ID, Vehicle-name)

Truck table:

Attribute name Nulls Domain
Vehicle-ID N ID
Vehicle-name N Name
Cost Y Money
No-of-axles Y count-axles
Capacity-in-Tonnes Y Capacity

Candidate Keys: (Vehicle-ID, Vehicle-name)
Primary Key: (Vehicle-ID)
Frequently accessed: (Vehicle-ID, Vehicle-name)

The above Table (Car Table, Truck Table) illustrates various subclass approaches.
This approach eliminates the superclass table and replicates all the superclass
attributes in each subclass table. We may use this approach if a subclass has many
attributes, the superclass has few attributes, and the application knows which subclass
to search.

Table Model for Generalization one Super Class Table
Vehicle table:

Attribute name Nulls Domain
Vehicle-ID N ID
Vehicle-name N Name
Cost Y Money
No-of-passengers Y Person
Maxspeed Y Speed
No-of-axles Y count-axles
Capacity-in-Tonnes Y Capacity

Candidate Keys: (Vehicle-ID, Vehicle-name)
Primary Key: (Vehicle-ID)
Frequently accessed: (Vehicle-ID, Vehicle-name)

The one superclass table approach shown above brings all subclass attributes up to the
superclass level. Each record in the superclass table uses attributes present in one
subclass, the other attribute values are null. The table in the above table (Vehicle
table) violates third normal form. Vehicle-ID or vehicle-name is the primary key, but
attributes values also depend on equipment type. This may be a useful approach if
there are only two or three subclasses with few attributes.

 35

Implementation The best way to handle generalization relationships that exhibits multiple inheritance

from disjoint classes is to use one table per super-class, one table per subclass. The
best way to handle multiple inheritance from overlapping classes is to use one table
for the superclass, one table for each subclass, and one table for the generalization
relationship.

 Check Your Progress 2

1) What is the main advantage of the object model? What are its different
components?

……………………………………………………………………………………

……………………………………………………………………………………

2) What are advantages of object models?

……………………………………………………………………………………

……………………………………………………………………………………

3) What is an object ID?

……………………………………………………………………………………

……………………………………………………………………………………

4) What are the advantages of object ID?

……………………………………………………………………………………

……………………………………………………………………………………

5) How the object classes are mapped to tables?

……………………………………………………………………………………

……………………………………………………………………………………

6) What are the advantages and disadvantages of merging an association into a

class?

……………………………………………………………………………………

……………………………………………………………………………………

2.6 INTERFACING TO DATABASES
For many applications, the only adequate solution to providing persistency of large
amounts of data is to make use of an existing database system. As well as being able
to handle effectively unlimited amounts of data, databases provide a number of
valuable services, such as support for multiple users, which cannot realistically be
implemented again and again, for every applications.
Object oriented databases provide seamless database support for applications designed
using object oriented methods. However, affordable object oriented databases are not
easily writable for object oriented applications. Object oriented applications may be
written using backend relational database. However, this approach can create
significant problems because the relational model of data is in some ways quite
different from the object model.

Suppose that we have a class diagram describing the data model of an application,
containing a number of persistent classes related by associations and generalization
relationships. To provide database support for this application, we will have to create
a relational database schema enabling the same information to be stored. This activity

 36

Object Mapping with
Database

involves translating one notation into another, and is similar in principle to that of
implementing a model in a programming language: we need to find a way of
expressing each UML construct using the concepts and notations of the target
environment.

Representing associations

Associations can be translated into relational schemas in a number of ways. In the
simplest case, a unidirectional link from object X to object Y can be implemented by
storing the key value of Y in the row of the table corresponding to X. This is the
relational equivalent of one object holding a reference to another; the embedded
reference is known as a foreign key in relational database terminology.

Representing generalization

Implementing generalizations in relational databases is slightly problematic, as there
is no single feature or technique which provides the required semantics. The most
straightforward approach is to represent both the superclass and the subclass in the
generalization relation as tables, with attributes of each class defined in the
corresponding table.

Interfacing to databases

Once an object oriented data model has been implemented as a relational database, it
is necessary to write the code that provides the functionality of the system. This code
must be able to read and write data from the database, interpreting it wherever
necessary, in terms of the model used by the program.

To achieve this, programming environments typically support an interface that allows
programmers to abstract away from the details of individual databases, and enables an
application to work with a variety of databases, or data sources. A typical example of
such an interface is the Java Database Connectivity (JDBC) API that enables Java
programmers to write programs, which interface to relational databases.

Essentially, an API like JDBC enables programmers to manipulate a database by
constructing commands in the database query language SQL, executing them on the
database, and then dealing with the data that is returned as a result.

 Check Your Progress 3

1) Explain how the object classes are mapped to tables.

……………………………………………………………………………………

……………………………………………………………………………………

2) Explain how the ternary associations are mapped to the tables.

……………………………………………………………………………………

……………………………………………………………………………………

3) Explain how the generalizations are mapped to the tables.

……………………………………………………………………………………

……………………………………………………………………………………

2.7 SUMMARY

In this unit, we have discussed mapping object classes to tables, i.e., each class maps
to one, or more tables. Mapping associations to tables, each many-to-many association
maps to a distinct table.

 37

Implementation We have also seen that each one-to-many association maps to a distinct table, or may

be buried as a foreign key in the table for the many class.

• Each one-to-one association maps to a distinct table, or may be buried as a
foreign key in the table for either class.

• For one-to-many, and one-to-one associations, if there are no cycles, you have
the additional option of storing the association, and both related objects, all in
one table. Be aware that this may introduce redundancy, and violate normal
forms.

• Role names are incorporated as a part of the foreign key attribute name.

• N-ary (n>2) associations map to a distinct table. Sometimes, it helps to promote
an n-ary association to a class.

• A qualified association maps to a distinct table with at least three attributes, the
primary key of each related class, and the qualifier.

• Aggregation follows the same rules as association.

Further, we have discussed mapping single inheritance generalizations to tables which
includes:

• The superclass and each subclass map to a table.

• No superclass table, superclass attributes are replicated for each subclass.

• No subclass tables, bring all subclass attributes up to the superclass level.

We have also seen that in mapping disjointed multiple inheritance to tables, the super-
class and each subclass map to a table. In the mapping overlapping multiple
inheritance to tables the superclass and each subclass map to a table, the
generalization relationship also maps to a table.

2.8 SOLUTIONS/ANSWERS
Check Your Progress 1

1) Object oriented designs are efficient, coherent, and less prone to the update
problems that are not present in many other database design techniques
presently.
It is not used widely because only few database vendors have supported it. It is
still not in the commercial stream. It is in the development stage.

2) The three component schema architecture proposed by ANSI/SPARC is as
follows:

External schema: an external view is an abstract representation of some
portion of the total database.
Conceptual schema: the conceptual view is an logical representation of
the database in its entirety.
Internal schema: the internal schema is the database as it is physically
stored.

3) There are two basic approaches for database design which are as follows:

Attribute driven: compile a list of attributes relevant to the application, and
normalize the groups of attributes that preserve functional dependencies.

Entity driven: discover entities that are meaningful to the application, and
describe them.

 38

 39

Object Mapping with
Database

4) The different integrity constraints in RDBMS are as follows:
Primary Key: a primary key is a combination of one or more attributes whose
unique value locates each row in a table.

Referential integrity (A foreign key): foreign key is an attribute of one table
that references to attribute in another table.

Check Your Progress 2

1) The object model focuses on logical data structures. Each object model consists
of many classes, associations, generalizations, and attributes.

2) Object models are effective for communicating with application experts and
reaching a consensus about the important aspects of a problem. Object models
help developers achieve a consistent, understandable, efficient, and correct
database design.

3) Each class-derived table has an ID for the primary key, one or more object IDs
form the primary key for association derived tables. An object ID is the
equivalent database construct.

4) The advantages of Object IDs are as follows:

i) IDs are never changing
ii) IDs are completely independent of changes in data value and physical

location
iii) IDs provide a uniform mechanism for referencing objects.

5) Each object class maps to one or more tables in the database. The objects in a
class may be partitioned horizontally and/or vertically.

6) Advantages:
i) Fewer tables
ii) Faster performance due to fewer tables to navigate.

Disadvantages:

i) Less design rigor
ii) Reduced Extensibility
iii) Increased complexity

Check Your Progress 3

1) Each object class maps to one, or more tables in the database. The objects in a
class may be partitioned horizontally and/or vertically. For instance, if a class
has many instances of which, a few are often referenced. In this case, horizontal
partitioning may improve efficiency by placing the frequently accessed objects
in a table, and the remaining objects in another tables. Similarly, if a class has
attributes with different access patterns, it may help to partition the objects
vertically.

 2) Whenever a ternary relationship is there between the different classes, then each
class is mapped to a table with the inclusion of object ID. Apart from this, a
new ternary table is also created which has attributes from the different classes
involved in the relationship. The attributes will include the object ID of all the
classes involved in the relationship, and the attributes of the relation.

 3) There are two approaches in which generalizations are mapped to the tables:

The superclass and the subclass each map to a table. The identity of an object
across a generalization is preserved through the use of a shared ID.
The one superclass table will have all the subclasses attributes up to the
super-class level. Each record in the superclass table uses attributes present in
one subclass, the other attribute values are null.

 40

Implementation
UNIT 3 CASE STUDY: INVENTORY

CONTROL SYSTEM

Structure Page Nos.

3.0 Introduction 40

3.1 Objectives 40

3.2 Class Diagram 40

3.3 Object Diagram 41

3.4 Generalization and Association Diagram 42

3.5 Collaboration Diagram 44

3.6 Activity Diagram and Events 44

3.7 Use Case Diagram 48

3.8 Deployment Diagram 49

3.9 Summary 51

3.0 INTRODUCTION

Inventory control systems are used for managing the stocks of companies and big
distribution organisations. In this unit we will discuss about OOM for invention
control systems. We will cover class diagram design, object diagram different kind of
relationships, which include generalization, association and collaboration. We will
also discuss use case diagrams activities and events.

3.1 OBJECTIVES

After going through this unit, you should be able to:

• explain class diagram and object diagram of Inventory control System;
• describe generalization and Specialization of the system;
• describe collaboration diagram of the system;
• explain different activities and events of the systems, and
• explain deployment Diagram.

3.2 CLASS DIAGRAM

You know that a class is represented in a box like figure. Here we are taking the case
study of Inventory Control System.

Let us first set an idea of the Inventory Control System. It is the system in which you
can manage the stock of the products that a company sells. Basically, this system is
stock oriented where it makes sure that the quantity-in-stock does not reach the danger
level (Qty-ordered>Qty-in-stock).

In any system when we reach this level, we place a new order. To avoid this situation,
when in our system Qty-in-stock reaches a minimum level called the Reorder-level
then a new order is placed. Here, in this case study, you will see various diagrams.

 41

Case Study: Inventory
Control System

 CUSTOMER

Customer-id
Cust-name
Cust-address
Cust-city
Cust-state
Cust-pincode
Cust-contact-no

ADD
MODIFY
DELETE
VIEW

SUPPLIER

Supplier-id
Supp-name
Supp-address
Supp-city
Supp-state
Supp-pincode
Supp-status
Supp-Contact No1
Supp-phone 2

ADD
MODIFY
DELETE
VIEW

Figure 1: Class diagram represents the static structure of a System

You know that a class is represented in a box like Figure which can have at the most
three regions.

• Class Name
• List of Attributes
• List of Operations/Methods

Class Methods

Attributes/properties

Class Name ORDER

Order-id
Description No. of items
product-id order date

NEW ()
EXISTING ()

SALE

Receipt-no
Sale-of- sale
Qty-sold

Detailed Item Sale ()
Daily Report Sale ()
Generate ()
View ()

INVOICE

Invoice-no
Invoice-date
Customer-id
Supplier-id
Payment-status

Generate ()
View ()

PRODUCTS

Product-id
Name-of-product
Category-id
Description price
Qty-in-stock
Danger-level
Last-modification-date
Manufacturing-date

ADD
MODIFY
DELETE
VIEW

Figure 2: Class diagram

3.3 OBJECT DIAGRAM

Object Diagram is an instance of a class. It describes the static structure of a system at
a particular time and are used to test the accuracy of classes.

Implementation Generate

Report

 Enter

Product Details

 Prod. No

 PRODUCT
 INVOICE Bills of

Material SUPPLIER

 Invoice No.

 Order by

ORDER

details

Order- no by
Cust
Code

EXISTING

Old

 42

NEW

New
realise

CUSTOMER

Name
address

Places
an
order

 Update

 Identifies

details

Validation
Order

Order-no
Cost-no
Prod-no

 Validate

 Order

Order
received

Updates
Files

 Update
Stock

Qty-Stock

 Dispatch
Order

Order
Details

Figure 3: Object Diagram

3.4 GENERALIZATION AND ASSOCIATION
DIAGRAM

Generalisation: This is another name for inheritance, or an “is a” relationship. It
refers to a relationship between two classes where one class is a specialized version of
another.

 43

Case Study: Inventory
Control System

Sub Type 1

Regular Customer Customer

PRODUCT

New Product Existing Product

CUSTOMER
Name: string

Credit ()

Figure 4: Generalisation of customer and product

Sub Type 2

Super Type

Association: This represents static relationship between classes.
Roles represent the way the two classes see each other.

Class BClass A
name

1 n

m

n
n

m

SUPPLIER

Supplier Details

CUSTOMER

Customer details

ORDER

Date-of order: date
Order-no

n role 1 role

Figure 5: Association of Order and customer

Aggregation: This denotes a strong ownership between class A, the whole, and class
B, and its part.
Hollow Diamond Simple Aggregation

Filled Diamond Strong Aggregation

SUPPLIERORDER ORDER

CUSTOMERINVOICE PRODUCT

Figure 6: Aggregation

Ternary Association for Customer Supplier

PRODUCT

SUPPLIERCUSTOMER

Figure 7: Ternary association

 44

Implementation
3.5 COLLABORATION DIAGRAM
This represents the interactions between objects as a series of sequenced messages.
Collaboration diagrams describe both the static structure and the dynamic behaviour
of a system.

Representation

Figure 8 a: Collaboration diagram for inventory control system

Object: Class

2.3 [Condition]
Message

 Actor

Object: Class

1. Message
2. Message
3. Message

1.2: [Condition]
Message

Object: Class

Object: Class

SUPPLIER

3.0

Delivery new ()

: SUPPLIER

: STOCK

: PRODUCT

: ORDER

New product 1
[In order] 1.1

[In Stock]

 Customer

1 places an
order

2.0 [SUPPLIER]
Invoice

Figure 8 b: Collaboration diagram for the inventory control system

3.6 ACTIVITY DIAGRAM AND EVENTS
STATECHART DIAGRAM

This describes the dynamic behaviour of a system in response to external stimuli

• Basically, states are triggered by specific events.

Representation:

Final state

Initial state

State

event/action

Activity Diagram

This illustrates the dynamic nature of a system by modeling the flow of control from
activity to activity, or you can say operation on some class that results in a change in
the state of the system.

 45

Case Study: Inventory
Control System • Basically, this shows the workflow model, or business process and the internal

operation

: Class

Activity

Activity

: Class

Figure 9: Activity flow

Synchronization and Splitting of Control

• A short heavy bar with two transitions entering it represents a synchronization
of Control.

• Splitting of Control that creates multiple states.

Splitting of Control
Synchronization

Payment Made

Demand Occurred

Regular Delivery Overnight Delivery

Reverse Order

[else] [Rush order]

Place the Order Validate the Order

[Valid demand]

Check
QTY-in-stock

Cancel Demand

[Valid]

Demand Occurred

Figure 10: Activity diagram

Events
Actions taken in Inventory Control System:

1) Order is placed by the CUSTOMER
2) Order is received by the SUPPLIER
3) Checking of Quantity-in-Stock and Reorder-level
4) Checking of Inventory Status
5) Generating Bills of Material

 46

Order

INVOICE

Implementation 6) Generating the INVOICE VOUCHER
7) Updating Inventory Status File

Main screen
Do: display
Customer/Supplier

Validation Do: Verify the
Order

Do:
Place the Order Select

Order

Order
OK

 Order Rejected

Sector the
Order

Rejected Order
Do: reject the

Min Qty >qty-in-stock
Reorder Level

Do: check
min. Qty-in-stock

Cancel
Do: cancel the
Order

Display
Do: finish process

Do: Display Bad
 Message

Generation Do:
Generate

Generate
Do: Generate
Bills of Material
(BOM)

Update
Do: Update
Inventory Status
File

Figure 11: State diagram

 47

Control System
Case Study: Inventory

<<uses>> Place an
Order

Generate
INVOICE

 <<extends>> <<extends>> <<uses>> <<uses>>

 Invoice of the

item for Supplier

Update Inventory
Status File

Invoice of an item
for Customer

Generate
Receipt

Receipt for
Supplier

Receipt of an item
for Customer

<<uses>>

Check
Qty-in-stock

<<uses>> <<uses>>

Validate
the order

Place an
Order

Figure 12: Adding details

Data Flow Diagram for System

2.1 Reject
the Order

Inventory File
 5.0

Update
Inventory
Status

trans details

Transaction File

Validation Order

 4.0

Generate
Bills of
Material

OK Qty-in-stock

Validated ROL 8.0

Generate
Invoice
Voucher

 2.0

Valid ROL
& Qty-in-
stock

 1.2

Check
Reorder
level

Order

Invalid

 2.0

Display
error Msg

Order Master File

Check

Order details

 1.0

Validate
the order

demand

Places
CUSTOMER

 1.0

Places an
 order

Figure 13: Data flow diagram

 48

Implementation
3.7 USE CASE DIAGRAM

A “uses” relationship indicates that the use case is needed by another in order to
perform a task

• An “extends” relationship indicates alternative options under a certain use case.

• Use case diagrams model the functionality of a system using actors and use

cases.

• Use cases are services or functions provided by the system to its users.

Use Case

Use Case

(Actor)

Use Case

Figure 14: Use Case diagram

For Inventory Control System the initial design is:

SUB DIAGRAM

INVENTORY
CONTROL SYSTEM

Place an
Order

Generate
INVOICE

Update
Inventory
Status File

Generate
BOM

Update
Inventory
Status File

Generate
INVOICE

Generate
BOM

 <<uses>> <<uses>> <<uses>>

Actor
(Customer)

Place an Order

Figure 15: Initial design of the Inventory Control system

 49

Case Study: Inventory
Control System

USER INTERFACE

To
View

Set
Order Qty

Set
Qty-in-stock

60 Sec
without
input

Setup

Set
Program

Set
Order Qty

Set
Qty-in-stock

Run Program Interactive Display

Run
Program

HOLD

Set upon Order

Select

Set supplier & Customer code

Run entries
are set

Display
Order Screen
do: show order details

Display Supplier
Screen
Do: show supplier

button

enter
Display
Menu Screen
do: show Customer

Operate

Power on
Load Standard Program

Generating report mode

Press Report
Button

Invoice
Card
Button

Press

Run Button

Generate Inventory
Status Report

Generate Invoice
Voucher

Generate Bills of
Material entry Report

Figure 16: User interface

3.8 DEPLOYMENT DIAGRAM

Deployment diagram: This shows the hardware for your system, the software that is

installed on that hardware, and the middleware that is used to connect the machines to

one another.

 50

Implementation • Deployment diagrams depicts the physical resources in a system including
nodes, components and connections, where a node is a physical resource that
executes code components.

Node

 Component

Figure 17: Deployment

 JDBC

<<JDBC>>

{order=order}

<<Device>>
DB Server

 Inventory DB
<<databases>>

Web Server

 INVENTORY
CONTROL
SYSTEM
<<JSPs>>

<<Deployment
Space.>>
Placing of Order

Execution: thread
Nested
Transaction: True

<<EJBs>>
Servlets

PRODUCTS

SUPPLIER

CUSTOMER

Inventory Control
Series
<<Web Services>>

M

<<Device>>
:App” Server

Inventory gmt. jar

: EJB Container

customes. ear
supplier. ear
product. ear
order..xml
<<deployment space>>

<<JDBC>>
Inventory
DB

<<JDBC>>

Web Server

 Inventory
Control War

Figure 18: Deployment diagram

 51

Case Study: Inventory
Control System 3.9 SUMMARY

In this unit different diagram are design to represent OOM of inventory control
system. These diagrams are:

• Class diagram

• Object diagram

• Generalization and association

• Collaboration diagram

• Activity diagram

• State diagram

• Dataflow diagram

• Use case diagram

• Use Interface and Deployment Diagram.

